Sliding-Coin Puzzles

Erik D. Demaine Martin L. Demaine*

In what ways can an arrangement of coins be reconfigured by a sequence of moves where
each move slides one coin and places it next to at least two other coins? Martin Gardner
publicized this family of sliding-coin puzzles (among others) in 1966. Recently, a general
form of such puzzles was solved both mathematically and algorithmically. We describe the
known results on this problem, and show several examples in honor of Martin Gardner for
the 5th Gathering for Gardner.

1 Puzzles

Sliding-coin puzzles ask you to re-arrange a collection of coins from one configuration to
another using the fewest possible moves. Coins are identical in size, but may be distinguished
by labels; in some of our examples, the coins are labeled with the letters G, A, R, D, N, E, R.
For our purposes, a move involves sliding any coin to a new position that touches at least
two other coins, without disturbing any other coins during the motion.

The rest of this section presents several sliding-coin puzzles.

1.1 Triangular Lattice

We start with some basic puzzles that are on the triangular lattice in the sense that the center
of every coin is at a vertex of the planar lattice of equilateral triangles. The restriction that
a move must bring a coin to a new position that touches at least two other coins forces a
puzzle to stay on the triangular lattice if it is originally on it.

TRIANGULAR LATTICE PUZZLES

‘ Classic Puzzles ‘
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Puzzle 1: Rhombus to a circle
(3 moves)

Puzzle 2: Turn the pyramid
upside-down (3 moves)

*The Demaines are a father-and-son team. Erik D. Demaine, the father, is an assistant professor of
computer science at MIT who likes anything algorithmic or geometric. Martin L. Demaine, the son, is a
researcher in computer science at MIT who likes anything mathematical and artistic.



‘ New Puzzles ‘
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Puzzle 4: Spread out the
Puzzle 3: Pyramid to a line GARDEN (9 moves).
(7 moves). Source unknown.

1.2 Square Lattice

Next we give a few puzzles on the square lattice. Here the centers of the coins are at vertices
of the planar lattice of squares, and we make the additional constraint that every move brings
a coin to such a position. The restriction that a move must bring a coin to a new position
that touches at least two other coins does not force the puzzle to stay on the square lattice,
but this additional constraint does.

SQUARE LATTICE PUZZLES

‘ Penta Puzzles ‘
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) Puzzle 6: Rotate the L by 90° Puzzle 7: Fix the spelling of
Puzzle 5: Flip the L (4 moves) (8 moves) GRAND (8 moves)

‘ Hard Puzzles ‘
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Puzzle 8: Flip the diagonal
(hard) Puzzle 9: Flip the roman
numeral V (very hard)

2 History

Sliding-coin puzzles have long been popular. For example, the classic Puzzle 1 is described in
Martin Gardner’s Scientific American article on “Penny Puzzles” [8], in Winning Ways [1], in
Tokyo Puzzles [7], in Moscow Puzzles [9], and in The Penguin Book of Curious and Interesting
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Puzzles [12]. Langman [10] shows all 24 ways to solve this puzzle in three moves. Puzzle 2 is
another classic [2, 7, 8, 12]. Other puzzles are presented by Dudeney [6], Fujimura [7], and
Brooke [4].

The historical puzzles described so far are all on the triangular lattice. Puzzles on the
square lattice appear less often in the literature but have significantly more structure and
can be more difficult. The only published example we are aware of is given by Langman [11],
which is also described by Brooke [4], Bolt [3], and Wells [12]; see Puzzle 10. However, the
second of these puzzles does not remain on the square lattice; it only starts on the square
lattice, and the only restriction on moves is that the new position of a coin is adjacent to at
least two other coins.
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Puzzle 10: Re-arrange the H into the O in four moves while staying on the square lattice (and always
moving adjacent to two other coins), and return to the H in six moves using both the triangular and
square lattices.

3 Mathematics

A paper by Helena Verrill and the present authors [5] solves a large portion of the general
sliding-coin puzzle-solving problem: given two configuration of coins, is it possible to re-
arrange the first configuration into the second via a sequence of moves? One catch is that,
for the results to apply, a move must be redefined to allow a coin to be picked up and
placed instead of just slid on the table. another catch is that the solution does not say
anything about the minimum number of moves required to solve a specific puzzle, though
it does provide a polynomial upper bound on the number of moves required. (From this
information we can also determine which puzzle requires roughly the most moves, among
all puzzles.) Despite these catches, the results often apply directly to sliding-coin puzzles
and tell us whether a given puzzle is solvable, and if so, how to solve it. The ability to tell
whether a puzzle is solvable is ideal for puzzle design.

A surprising aspect of this work is that there is an efficient algorithm to solve most
sliding-coin puzzles, which runs fast even for very large puzzles. In contrast, most other
games and puzzles, when scaled up sufficiently large, are computationally intractable.

3.1 Triangular Lattice

It turns out to be fairly easy to characterize which triangular-lattice puzzles are solvable.
Part of what makes this characterization easy is that most puzzles are solvable. Consider a
puzzle with an initial configuration that differs from the goal configuration. There are a few
basic restrictions for this puzzle to be solvable:



1. There must be at least one valid move from the initial configuration.
2. The number of coins must be the same for the initial and goal configurations.
3. At least one of the following four conditions must hold:

(a) The final configuration contains a triangle of three mutually touching coins.
(b) The final configuration contains four connected coins.

(c¢) The final configuration contains three connected coins and two different touching
coins (as in Puzzle 4).

(d) The puzzle is solvable by a single move.

4. If the coins are labeled and there are only three coins (a rather boring situation), then
the goal configuration must follow the same 3-coloring of the triangular lattice.

After some thought, you will probably see why each of these conditions must hold for a
puzzle to be solvable. What is more surprising, but beyond the scope of this article, is that
these conditions are enough to guarantee that the puzzle is solvable. Interested readers are
referred to [5] for the proof.

3.2 Square Lattice

Solvable square-lattice puzzles are trickier to characterize. Much more stringent conditions
must hold. For example, it is impossible for a configuration of coins to get outside its
enclosing box. This property is quite different from the triangular lattice, where coins can
travel arbitrary distances.

A notion that turns out to be particularly important with square lattices is the span of a
configuration. Figure 1 shows an example. Suppose we had a bag full of extra coins, and we
could place them onto the lattice at any empty position adjacent to at least two other coins.
If we repeat this process for as long as possible, we obtain the span of the configuration.
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Figure 1: In general, the span consists of one or more rectangles separated by distance at least two
empty spaces.

A key property of span is that it can never get larger by a sequence of moves. The span
effectively represents all the possibly reachable positions in a configuration. So if you are to
move the coins from one configuration to another, the span of the first configuration better
contain the span of the second configuration.

This condition is not quite enough, though. In fact, the exact conditions are not known
for when a square-lattice puzzle can be solved. However, most solvable configurations have
some extra coins whose removal would not change the span of the configuration. The main
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result of [5] says that if a configuration has at least two extra coins, then it can reach any
other configuration with the same or smaller span.

This result is complicated, leading to some puzzles with intricate solutions, as in Puzzles 8

and 9, for example. To work your way up to these difficult puzzles, we have provided some
“warm up”’ puzzles that involve 5 coins, in the spirit of the “penta” theme of the Fifth
Gathering for Gardner.
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A Solutions

Solutions to Puzzles 1, 2, 3, 5, 6, and 7 were found by an exhaustive breadth-first search, and as a
result we are sure that the solutions use the fewest possible moves. For Puzzle 4, it is conceivable
that using more than two “rows” leads to a shorter solution; the solution below is the best among
all two-row solutions. Puzzles 8 and 9 are left as challenges to the reader; we do not know the
minimum number of moves required to solve them. The second half of Puzzle 10 was solved by
hand, but the number of moves is minimum: the maximum overlap between the H and the O is
four coins, three moves are necessary to enter the triangular lattice and return to the square lattice,
and every move starting with Move 3 puts a coin in its final position.
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Solution to Puzzle 1: Three moves.
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Solution to Puzzle 2: Three moves.
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Solution to Puzzle 3: Seven moves.
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Solution to Puzzle 4: Nine moves.
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Solution to Puzzle 6: Eight moves.
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Solution to Puzzle 7: Eight moves.
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Solution to Puzzle 10: Four moves there and six moves back.




