
Shape Replication through Self-Assembly and RNase Enzymes

Zachary Abel∗ Nadia Benbernou† Mirela Damian‡ Erik D. Demaine†

Martin L. Demaine† Robin Flatland§ Scott D. Kominers∗ Robert Schweller¶

Abstract
We introduce the problem of shape replication in the
Wang tile self-assembly model. Given an input shape, we
consider the problem of designing a self-assembly system
which will replicate that shape into either a specific
number of copies, or an unbounded number of copies.
Motivated by practical DNA implementations of Wang
tiles, we consider a model in which tiles consisting of
DNA or RNA can be dynamically added in a sequence of
stages. We further permit the addition of RNase enzymes
capable of disintegrating RNA tiles. Under this model,
we show that arbitrary genus-0 shapes can be replicated
infinitely many times using only O(1) distinct tile types
and O(1) stages. Further, we show how to replicate
precisely n copies of a shape using O(log n) stages and
O(1) tile types.

1 Introduction
Self-assembly can be seen as an approach to harness-
ing the power of (synthetic) biology to work with ob-
jects at the nanometer scale. Most theoretical models of
self-assembly [Win98, Adl00, RW00a, DDF+08] enable
the building of structures by joining materials together,
but forbid later splitting materials apart. Although such
models are interesting and useful for manufacturing, biol-
ogy offers substantially more power: biological structures
may interact, change, and compute.

We introduce the enzyme self-assembly model, a
slight strengthening of standard tile self-assembly mod-
els to enable partial disassembly of structures through the
destruction of all tiles within a fixed tile class. This model
is motivated by the existence of RNase enzymes [UE71],
which can disintegrate RNA molecules without disturb-

∗Department of Mathematics, Harvard University, Cambridge, MA
02138, USA, {zabel,kominers}@fas.harvard.edu.
†MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar St., Cambridge, MA 02139, USA, {nbenbern,edemaine,
mdemaine}@mit.edu. Partially supported by NSF CAREER award
CCF-0347776 and DOE grant DE-FG02-04ER25647.
‡Department of Computer Science, Villanova University, PA 19085,

USA, mirela.damian@villanova.edu.
§Department of Computer Science, Siena College, NY 12211, USA,

flatland@siena.edu
¶Department of Computer Science, University of Texas-Pan Ameri-

can, Edinburg, TX 78539, USA, schwellerr@cs.panam.edu

ing DNA molecules, and the work of Rothemund and
Winfree [RW00a] which suggested the plausibility of
such a technique. In enzyme self-assembly, tiles are di-
vided into two classes—DNA and RNA—and a manu-
factured structure can be partially disassembled via the
addition of RNase, which destroys all RNA tiles.

Although enzyme addition is a heavily restricted op-
eration, its addition already enables more efficient con-
struction of certain shapes. For example, construct-
ing a 1 × n rectangle requires n distinct tile types
in the standard self-assembly model, but requires only
O(log n/ log log n) tile types with enzymes.1

More interestingly, the enzyme self-assembly model
enables manipulation beyond just assembly. For exam-
ple, RNA tiles offer the ability to “probe” an existing,
unknown DNA object without irreparably damaging that
object. We show that this ability can be exploited to build
a general-purpose replicator, which produces either a de-
sired number or infinitely many copies of a given, un-
known object, using a constant number of tile types and
operations.

While algorithms for replicating shapes are a long
way from answering Caption Jean-Luc Picard’s “tea,
Earl Grey, hot” [Rod94], our approach opens the door
for a new genre of self-assembly problems. Ultimately,
we might hope to build a general-purpose biological
computer that can manipulate matter at nanometer scales.

Our results. We introduce enzyme self-assembly as
an extension of the staged assembly model [DDF+08], as
defined formally in Section 2. In the replication problem,
we are given a single copy of an unknown shape, with the
small (necessary) restrictions that the shape’s edges lie on
the unit-square lattice (so that it exists within the model)
and has a known glue type along its boundary (so that
it can possibly interact with added tiles). In the precise
yield version of the replication problem (Section 3), the
goal is to produce exactly n copies of the given shape,
while in the infinite yield version (Section 4), the goal is to
produce infinitely many copies of the given shape. (The
latter goal is natural, as self-assembly models normally

1We can build an n×n square usingO(logn/ log logn) tile types
in the standard self-assembly model, and a simple modification makes
all tiles RNA except for a single row of DNA.

assume that there are infinitely many copies of all objects,
with the notable exception of the given shape.)

We solve both versions of the replication problem for
all genus-0 shapes. For the precise yield of n replicas,
we provide a solution using O(1) tile types and O(log n)
stages. For the infinite yield version, we provide a
solution using O(1) tile types and O(1) stages. Both
algorithms assume that the minimum feature size of the
given shape is not too small: the feature size must
be at least 5 for precise yield, and at least Ω(log n)
for infinite yield. In the special case of x-monotone
shapes, the bound for infinite yield can be improved to
4. (Section 4.1).

Our results break the mold of previous self-assembly
research, showing that a simple and heavily constrained
destructive operation allows a wealth of new problems to
be solved. On the one hand, our construction for precise
yield is conceptually simple and may lead to practical
shape replication. On the other hand, our construction
for infinite yield is intricate, and seems necessarily so,
illustrating the algorithmic depth of the enzyme self-
assembly model and paving the way for further research.

Related work. In the area of replication, Schul-
man and Winfree considered the self-replication of DNA
crystals in the tile assembly model and its relation to
evolution [SW05]. In the direction of removing and
breaking apart previous assembled structures, Aggar-
wal et al. [AGKS04] and Kao and Schweller [KS06] con-
sidered the multiple temperature model to add and re-
move assemblies by adjusting the temperature of the as-
sembly system.

2 Staged Replication with RNA Removal: Model
and Problem Formulation

In this section we define the Staged Replication Assembly
Model (SRAM). We start with basic definitions common
to most assembly models, then we describe the SRAM
model.

2.1 Basic Definitions.
Tiles and glues. A (Wang) tile type t is a unit square

defined by the ordered quadruple 〈north(t), east(t),
south(t),west(t)〉 of glues on the four edges of the tile.
Each glue is taken from a finite alphabet Σ, which in-
cludes a special “null” glue denoted null. For simplicity
of bounds, we do not count the null glue in the glue com-
plexity g = |Σ| − 1. Each glue type is assigned an integer
strength from 0 to some given value τ by the glue function
G : Σ2 → {0, 1, . . . , τ}. It is assumed that G(x, y) =
G(y, x) for all x, y ∈ Σ and that G(null, x) = 0 for
all x ∈ Σ. Indeed, in all of our constructions, as in the
original model of Adleman [Adl00], G(x, y) = 0 for all

x 6= y2, and each G(x, x) ∈ {1, 2, . . . , τ}. The tile com-
plexity of the system is |T |.

Configurations. Define a configuration to be a
function C : Z2 → T ∪ {empty}, where empty is a spe-
cial tile that has the null glue on each of its four edges.
The shape of a configuration C is the set of positions
(i, j) that do not map to the empty tile. For two con-
figurations C and D that do not overlap, we define the
union configuration U = C

⋃
D to be the configuration

such that U(x, y) = C(x, y) if C(x, y) 6= empty, and
U(x, y) = D(x, y) if C(x, y) = empty.

Adjacency graphs. Define the adjacency graphGC
of a configuration C as the following weighted graph.
The vertices are coordinates (i, j) such that C(i, j) 6=
empty. There is an edge between two vertices (x1, y1)
and (x2, y2) if and only if |x1 − x2| + |y1 − y2| =
1. For two vertices at positions (x1, y1) and (x1 +
1, y1), the weight of the edge connecting these vertices is
G(east(C(x1, y1)),west(C(x1 +1, y1))). For vertices at
positions (x1, y1) and (x1, y1 + 1), the weight of the con-
necting edge is G(south(C(x1, y1)),north(C(x1, y1 +
1))).

Supertiles and stability. Intuitively, a supertile tile
is a connected pattern of tile types on the grid. However,
the exact position on the grid is not important, so we
define supertiles to be equal up to translation. For a
connected configuration C, the set of all translations of
C is referred to as a supertile. For each supertile S, let
Sc denote some representative configuration of S. For a
non-negative integer τ , a supertile S is said to be stable
at temperature τ if the weight of the minimum cut of the
adjacency graph GSc has weight at least τ .

Supertile combination. The self-assembly process
is driven by the possibility for any two supertiles in
solution to come together to form a new type of supertile.
Formally, we define the set of all supertiles that can be
assembled from a given pair of supertiles X and Y as
the combination set of supertiles Cτ(X,Y). For supertiles
X and Y , if there exists a translation Y rc of Yc such
that Xc and Y rc do not overlap, and Xc

⋃
Y rc is stable

at temperature τ , then the supertile S corresponding to
the set of all translations of Xc

⋃
Y rc is in Cτ(X,Y).

Breaking apart supertiles. In this paper we assume
all tile types are labeled as either DNA or RNA tile types.
For a given supertile Γ that is stable at temperature τ , we
permit the operation of adding an RNase enzyme to the
tile which removes all RNA tile types from the supertile
configuration (all RNA tile positions are formally set to
be the empty tile). For a given temperature the resultant
supertile may no longer be stable at temperature τ , and

2With a typical implementation in DNA, glues actually attach to
unique complements rather than to themselves. However, this depiction
of the glue function is standard in the literature and does not affect the
power of the model.

thus defines a multiset of subsupertiles consisting of
the maximal stable subsupertiles of Γ at temperature τ ,
denoted as BREAKτ (Γ).

2.2 Staged Replication with RNA removals. Staged
replication takes place over a number of stages. A stage
replication system specifies each stage as either a tile
addition stage, in which new tile types are added to the
system, or an enzyme stage, in which assembled supertiles
are broken into pieces by deleting occurrences of RNA
tile types. In both cases, each stage consists of an initial
set of preassembled supertiles from the previous stage,
unioned with a new set of tile types in the case of a tile
addition stage, or the current supertile set broken into
subsupertiles in the case of an enzyme stage. From this
initial set, the output of the stage is determined by the
two-handed assembly model defined as follows.

Two-handed Assembly. For an initial set of super-
tiles S and a temperature τ , the set of produced super-
tiles P ′(S,τ) under the two-handed assembly model is de-
fined to contain all supertiles in S, as well as any supertile
that can be obtained by combining two produced super-
tiles at temperature τ . More formally, P ′(S,τ) is defined
recursively as follows: (1) S ⊆ P ′(S,τ) and (2) for any
X,Y ∈ P ′(S,τ), C

τ
(X,Y) ⊆ P ′(S,τ). The set of termi-

nally produced supertiles P(S,τ) is the subset of produced
supertiles that cannot grow any further. More formally,
P(S,τ) = {X ∈ P ′ | ∀Y ∈ P ′, Cτ(X,Y) = ∅}. In the
case that there exist arbitrarily large supertiles in P ′(S,τ),
we say there exist infinite supertiles that are terminally
produced. In such a case, for any (infinite) supertile Γ
whose subsupertile specified by a dimension n box, cen-
tered at the origin, matches the corresponding subsuper-
tile for some supertile in P ′(S,τ) (up to translation) for all
n > 0, we say Γ is an element of P(S,τ). In this paper we
assume τ = 2 and simply write PS to denote a terminally
produced supertile set derived from initial set S.

Staged replication assembly model. Formally, a
staged replication assembly system (SRAM system) is
a sequence 〈OP1, OP2, . . . , OPr〉 which denotes a list
of operations to be performed at each of the r stages of
the assembly process. The input to a SRAM system is
some finite supertile s consisting of all DNA tile types.
Further, s is assumed to have a known strength 1 glue
type σ on all exposed surfaces.3 Each operation OPi
consists of either the operation ADD(Ti) for some set
of singleton tile types Ti, or the operation BREAK in the
case of an enzyme stage. At each stage i, a collection of

3For clarity, in some of our constructions we assume the input shape
has 4 distinct glues, one for each of the the possible directions north,
south, east, and west. However, with some added tiles and stages, our
constructions can be modified to satisfy the single glue version of the
model while achieving the same asymptotic complexities.

supertiles is assembled under the two-handed assembly
model and fed as input to the next stage. In particular,
stage 1 starts with initial supertile set s

⋃
T1 for an

initial set of tile types T1 specified by the SRAM system,
and produces as output the set OUTPUT1 = P(s

S
T1),

the terminally produced set of supertiles derived from
s
⋃
T1. In general, the output of stage i is defined to be

OUTPUTi = P(OUTPUTi−1
S
Ti) for tile addition stages,

and OUTPUTi = PBREAK(OUTPUTi−1) for enzyme
stages. For an r stage system, the final output of the
system is OUTPUTr.

Supertile multiplicity and problem formulation.
We assume the input supertile s whose shape is to be
replicated has initial multiplicity of 1. The goal is then
to design an SRAM system that will either assemble
exactly n supertiles with the shape of s, or infinitely many
supertiles with the shape of s. For a given ADD(Ti) stage
in an SRAM system, the multiplicities of each supertile
in OUTPUTi are determined by the multiplicities of the
assembled supertiles from the previous stage assemblies
OUTPUTi−1. In particular, if a supertile x ∈ OUTPUTi
can only be obtained by combining supertiles from Ti
and OUTPUTi−1 with infinite multiplicities, then x has
infinite multiplicity after stage i. On the other hand,
if x can only be assembled by combining exactly one
copy of an finite count supertile y ∈ OUTPUTi−1 with
supertiles of infinite multiplicity from OUTPUTi−1

⋃
Ti,

and x is the only supertile in OUTPUTi that can be
assembled from a copy of y, the multiplicity of x after
stage i is the same as the multiplicity of y after stage
i − 1. If all assembled supertiles fall into the above
two categories, the assembly for stage i is denoted as
reliable. In the case that the ith stage consists of a
BREAK(OUTPUTi−1) operation, any supertile y ∈
OUTPUTi−1 with multiplicity m gives multiplicity m
to each subsupertile in BREAK(y), with multiplicities
being summed in the case of multiple copies of the same
supertile.

The goal of this paper is to design SRAM systems
that will create as output copies of any given input
shape s with either multiplicty precisely some value n
(precise yield problem) or infinite multiplicity (infinite
yield problem). We measure the efficiency of such SRAM
systems in terms of the number of distinct tile types
(tile complexity) and the number of stages used (stage
complexity).

3 Precise Yield Replication
In this section we describe techniques for self-assembly
of tiles that produce a specified number n of copies of a
given input shape. We begin in Section 3.1 with a de-
scription of an efficient replication technique for rectan-
gular input shapes, that achieves O(log n) tile complex-
ity and constant stage complexity. We turn to arbitrary

input shapes in Section 3.2, where we explore tradeoffs
between tile complexity and stage complexity.

3.1 Precise Yield for Rectangles. Given an integer
n > 0 and a rectangle R, we show how to create n copies
of R in one stage. The main idea is to use RNA-tiles to
build a binary counter that increments precisely n times,
and attach to each distinct number a copy of R built from
DNA-tiles. The counter gets destroyed by an enzyme in
a second phase, leaving the n independent copies of R
undisturbed.

Several versions of binary counters exist [RW00b,
ACGH01, CE03, AGKS04], differing in their tile and
stage complexity. We start with a brief review of the
tile set used in the counter implementation in [AGKS04],
which we subsequently modify to support rectangle repli-
cation.

3.1.1 Binary Counter [AGKS04]. The binary counter
is represented as a k × n rectangle, with k = O(log n).
The leftmost column represents the initial number, and
each successive column in the right direction encodes the
next natural number. Five classes of tiles are used in this
system (see Fig. 1):

1. Seed tiles(k). An initial column of k = log n distinct
seed tiles are used to encode the initial number in
binary, with the most significant bit represented by
the topmost seed tile.

2. Chain tiles(2). Chain tiles encode the least signifi-
cant bit of each number. The chain tile C0 encodes
a bit 0, which always increments in the next step
by attaching to tile C1 (encoding 1) by its strength-
2 side. The chain tile C1 becomes part of a tile
column sequence that encodes a 1-bit string, which
must rollover in the next step. The rollover is ini-

C0

R 0

R 0

H1H0

P 1

H0

C1

0

(e)

0 0 0

gg

1 1 1

gg

r

c1 cC0

p

c1c C1

p

p

dP 1

r

r

d 0R 01

g

p

hH0

g

r

h 1H1

(a)

(d)

(c)

c1S 0

s1

S 1

s1

S k-1 0

0

s2

sk-1

...
(b)

S 0

S 1

S 2

S 3

0

0

H1

C0

0

0

C1 C0

P1

H0

0

H1

R 0

0

C1 C0

H0 H1

1

0

1

0

C1

P 1

(f)

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

...

Figure 1: Assembling a binary counter [AGKS04]: (a)
seed tiles (b) normal tiles (c) hairpin tiles (d) probe
tiles (e) chain tiles (f) binary counter example (first 8
increment steps).

tiated by a hairpin tile (see the last two columns of
Fig. 1f).

3. Probe tiles(2). A probe tile P is used to grow a
column upwards, starting from the bottom chain tile,
until the bit that requires incrementing in the next
step is encountered (see the column encoding the bit
string 0111 in Fig. 1f). In the next increment step,
a return probe tile R attaches to each probe tile P ,
simulating a rollover of the 1-bit encoded by P .

4. Hairpin tiles(2). A hairpin tileH0 in a column marks
the bit that needs incrementing in the next column.
Tile H0 grows into a hairpin in the next increment
step by attaching to a second hairpin tile H1, which
performs the actual incrementation. The column
growing downwards from H1 encodes 0-bits only
(see last column in Fig. 1f).

5. Normal tiles (2). Normal 0-tiles and 1-tiles fill in a
column upwards, starting from an H or a C tile.

The first eight increment steps of a counter based on this
tile system are shown in Fig. 1f.

3.1.2 2-State Binary Counter. Our procedure to repli-
cate a given rectangle R makes use of a binary counter
that increments precisely n times, once for each copy of
R. The key idea is to attach a copy of R to each distinct
number represented by the counter.

This means that the counter cannot increment in each
step, since it must leave room for a copy ofR – call itR1 –
to attach to the current counter value. Instead, the counter
must propagate its current value over the length of the
top edge of R1, at the end of which it can increment (if
lower than the maximum value) to signal that a new copy
of R must be assembled. This process requires a slight
modification to the original counter, to enable the counter
to operate in two states: an increment (I) state, in which
the increment operation is enabled, and a propagate (P)
state, in which the increment operation is disabled, and
the current counter value is merely propagated forth to
the next column.

Initially, the counter is in a P -state. The transition
between the two states is implemented by means of a
trigger consisting of two columns: a first column growing
upwards enables the transition from a P -state to an I-
state; the increment operation and the transition from an
I-state to a P -state happen simultaneously in the next
step, which assembles a new counter column attached
to a second trigger column; this second trigger column
grows downwards and, once it reaches the bottom of
R, it triggers the assembly of a new copy of R. The
trigger makes this assembly possible by encoding the two
dimensions of R (horizontal length and vertical width)
with different types of tiles.

0 I

0
0
0
0

C0
I

0 I

0 I

0

(e)

0

cc1c

01

1

(a)

(d)

(c)

S 0

s1

S 1

s1

S k-1 0

0

s2

sk-1

...

(b)

S 0

S 1

S 2

S 3

(f)

0
0
0
0

0
0
0
1

0 I

H0
I

P 1
I

C0
I

0

χ

d

η

0P

H1
P

R 0
P

C1
P

0

h

d

1 1 I 11P1

H1
IH1

P h

pI rP rP rI

g
I

g
P

g
P

g
I

0 H0
P

pP

g
P

g
I

g
I

g
P

g
P

g
I

g
I

g
P

g
P

1 P 1
P R 0

I

pIpP

pIpP rP rI

rP rI

C1
IC1

P c1c C0
P

rP pP pP pIrI
χ

C1
P

H0
P

0P

0P

g
C

g
C

g
C

g
C

g
Cλ

λ λ

Figure 2: Tile system for the counter used in rectangle
replication.

We now turn to describing the tile system used for the
two-state (P , I) counter. Corresponding to each tile T in
the original tile system from Fig. 1, our two-state counter
uses two tiles T I and TP : tile T I is used to indicate an I-
state and tile TP is used to indicate a P -state. See Fig. 2
for an illustration of this tile system. Tiles with bond
strength 2 on one side (such as H1 and C1) constitute the
only exception from the duplication rule. Corresponding
to each such tile in the original system, we use three tiles
in our two-state system: one I-tile and two P -tiles. One
of the two P -tiles carries the bond strength 2 on one side,
whereas the second P -tile has bond strength 1 on all sides
(see the two HP

1 and the two CP1 tiles from Figs. 2(c,e)).
Two key ideas underlie this tile system design:

1. Replicas of a P -tile should enable the assembly of a
horizontal chain of arbitrary length, to propagate the
encoded bit. This renders necessary the condition
that a P -tile should have matching glues on its
vertical (left and right) sides.

2. A horizontal chain of P -tiles should not grow indef-
initely at temperature T = 2. To prevent infinite
growth, we use a different glue on a P -tile side with
bond strength 2 (e.g., η for HP

1 in Fig. 2c and χ for
CP1 in Fig. 2e).

We also use different glues on the horizontal sides of
P -tiles and I-tiles, to guarantee that a counter column
contains only P -tiles or only I-tiles (never both).

By design, seed tiles are P -tiles; the transition from
the P -state to an I-state will be triggered by an event
outside of the counter. Let us assume for the moment that
this event (indicated by the two dashed tiles in Fig. 2f)
has occurred in the system, and that a new column of
I-tiles encoding the original counter value δ has been
assembled. In Fig. 2f, we use δ = 0 as a running
example. By design, the increment operation and the
transition to a P -state will happen simultaneously in

the next step. Note however that after the assembly
step for the next column, the assembly process for the
counter halts: since all unattached sides of the current
counter assembly have strength 1, no tile can bond to it
at temperature T = 2. This indicates that our two-state
counter cannot function on its own, and is in fact designed
to operate in conjunction with the rest of the replication
system described next.

3.1.3 Rectangle Tile Sets. Let R be the input rectan-
gle. We design a system that creates a replica R1 of R
under the following assumptions: (a) R is stable at tem-
perature T = 2 (b) the upper right corner tile of R has
bond strength 2 on its unattached (north and east) sides;
the north side of this tile has glue gN and the east side
has glue gE (c) the lower left corner tile of R has bond
strength 2 and glue gS on its south side. (d) any other
tile of R has bond strength 1 on its unattached sides. East
unattached sides have glue e, and south unattached sides
of R have glue s. These ideas are illustrated in Fig. 3a.
The north side of the upper right corner tile is used to ini-
tiate the counter; the east side of the same tile is used to
initiate the trigger (see Fig. 3e); and the south side of the
lower left corner tile is used to initiate the assembly of
a square below R and alongside the trigger, so that the
trigger can propagate both dimensions of R to R1.

Square Tile Sets. Given a seed row (column),
Rothemund et al. [RW00b] show how to assemble a
square abutting that row (column) using four tiles only.
We use their method to assemble a square below R; the
bottom row of R will serve as the seed row. Label the
four tiles A, B, F and G, as in Fig. 3b. With the help of
tile B, tile A initiates a new row by its strength-2 side,
which gets filled with F and G tiles: F tiles fill the gaps
left of A, and G tiles fill the gaps to the right of B. The
result is shown in Fig. 3c.

Later in our construction, we will be facing the task
of assembling a square abutting a given column, in which
case we will use a similar square tile set depicted in
Fig. 3f.

Trigger Tile Set. The set of trigger tiles is depicted
in Fig. 3d. The trigger begins with the tile I1 bonding
by its strength-2 side to the upper right tile of R, then
continues with I2 downwards alongside R and with I3
alongside the square below. The transition between the
two dimensions of R is marked by I3. A special tile I4
marks the bottom end of the trigger; its particular role will
become clear later.

The presence of the tile I1 triggers a change in
the counter state from P (ropagate) to I(ncrement), thus
enabling the counter to grow a new column representing
the current counter value increased by one. The assembly
of R1 could start at this point. However, for reasons to
be discussed later, we choose to grow the new counter

P1 P2 P3 P3 P4 P5

I

H0
P

C1
P

0P

0
0
1

H0
I

C1
I

0 I

0
0
1

g
S

aA

r

r sB

s

g
S

g
S

g
N

g
E

s s

e

e

e

R

g
E

e

e

e

s

s

a

A

A

A

B

B

R

g
N

g
E k1

e

s

a

j1

j1

e

j2

j2

g
C

k1

k2

k2 r

e

g
W

I1

I2

I3

I4

J 1

J 2

J 3

J 4

R

H1
P

C0
P

0P

0
1
0

e

e

e

e

g
W

s

s

j2

s

a

sF

s

s

g
W

s

g
W

r

rr rG

r

H0
P

C1
P

0P

0
0
1

H0
I

C1
I

0 I

0
0
1

A

A

A

B

B

R

H1
P

C0
P

0P

0
1
0

e

e

e

e

j2 ass

s

s

s

sss

g
I

g
I

g
I

s

A 1

B 1

A 1

A 1

A 1

B 1

B 1

I1

I2

I2

I2

I3

I3

I4

J 1

J 2

J 2

J 2

J 3

J 4

J 4

A

A

A

B

B

e

H1
P

C0
P

0P

H1
P

C0
P

0P

H1
P

C0
P

0P

0
1
0

0
1
0

0
1
0

H0
P

C1
P

0P

0
0
1

H0
I

C1
I

0 I

0
0
1

A

A

A

B

B

R

H1
P

C0
P

0P

0
1
0

e

e

e

e

s

s

s

sss

A 1

A 1

A 1

B 1

B 1

Fil
l
R 1

p pP1

g
I j2

P2 pP3

s

xP4

a

pP5

(a)

(b) (d)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

g
C

g
C

g
C

Q 1 Q 2

g
C

g
C

e e

I1

I2

I2

I2

I3

I3

I4

J 1

J 2

J 2

J 2

J 3

J 4

J 4

I1

I2

I2

I2

I3

I3

I4

J 1

J 2

J 2

J 2

J 3

J 4

J 4

e

e

e

e

s

s sF

s

rG

r

r

r

a

G

G G

F

F F

F

G

λ

i1

λ

λ

λ

Figure 3: Tile system for rectangle replication. (a) Input rectangle R. (b) Square tiles (first set). (c) Square assembly
belowR. (d) Trigger tile set. (e) Trigger assembly to the right ofR. (f) Square tiles (second set). (g) Square assembly
to the right of trigger. (h) Rectangle tile set. (i) Rectangle assembly and progress line growth. (j) Progress tile set.

column downwards, until it reaches the bottom of the
trigger (see Fig. 3e). The growth begins with the tile
J1 from Fig. 3d, then continues with J2 alongside the I2
tiles, marks the transition between the rectangle and the
square below with a special tile J3, then continues with
J4 until it reaches the bottom of the square. The tile J3 is
subsequently used to play the role of the lower left corner
tile of R.Tiles A1, B1, F and G (depicted in Fig. 3f)
cooperate in assembling a replica of the square below R,
column by column; the result is shown in Fig. 3g.

Rectangle Tile Set. Two more tiles (labeled Q1 and
Q2 in Fig. 3h) are needed to assemble R1. An important
characteristic of R1 is that it has glue gC on its top
unattached sides, thus enabling the counter to propagate
in its P -state alongside the length of R1. Once the
counter reaches the upper right corner of R1 however,
the assembly system halts; no nooks exist and, with the
exception of I4, unattached sides have bond strength 1.

Progress Tile Set. To enable further progress of the
system, we need to initiate the assembly of a new trigger
column to the right of R1, whose task is to activates the
counter. To this purpose, we design a set of “progress”
tiles that assemble into a line segment running alongside
the bottom of R1.

The progress tiles are depicted in Fig. 3j. The
strength-2 side of I4 bonds to P1, which serves as the
seed tile for the line segment; P1 then bonds to P2, which

continues with P3 alongside the bottom of R1, until it
reaches the lower right corner tile A1 of R1; a special tile
P4 bonds to A1 by its strength-1 top side, and to the end
tile P5 by its strength-2 right side. Refer to Fig. 3i. The
tile P5, which marks the end of the progress line, serves
as the seed for a new trigger column. From this point
on, the assembly process continues as described here and
in section 3.1.4, until precisely n copies of R have been
assembled.

3.1.4 Rectangle Replication Process. Let k be the
smallest integer such that n < 2k, and let δ = 2k−n−1.
The value δ serves as the initial value for our counter.
We start by attaching to the upper right corner tile of R a
column of tiles representing δ in binary. This is the seed
for our binary counter, which grows into a rectangle from
left to right.

In the following we summarize the main steps of the
self-assembly process that results in a new replica of R
to be assembled. Consider a moment in time when a new
trigger column composed of I-tiles is enabled to grow.
This stage is initiated by the upper right corner tile in the
original R for the first replica, and by the progress tile
P5 for subsequent (if any) replicas. In the first case, the
trigger column grows downwards; in the latter case, the
trigger column grows upwards, starting with I3, which
bonds to P5. In either case, the following self-assembly

P 1
I

C1
I

P2 P3 P3 P4 P5

A 1

A 1

A 1

B 1

B 1

J 1

J 2

J 2

J 2

J 3

J 4

J 4 I3

I3

I3

I2

I2

I2

I2

P 1
P

C1
P

H1
I

C0
I

1
0

P1 P2 P3 P3 P4 P5

H1
P

C0
P

H1
P

C0
P

H1
P

C0
P

1
0

1
0

1
0

H0
P

C1
P

0
1

H0
I

C1
I

0
1

A

A

A

B

B

R

H1
P

C0
P

1
0

A 1

A 1

A 1

B 1

B 1

I1

I2

I2

I2

I3

I3

I4

J 1

J 2

J 2

J 2

J 3

J 4

J 4 I3

I3

I3

I2

I2

I2

I2

P 1
P

C1
P

P 1
P

C1
P

P 1
P

C1
P

1
1

1
1

1
1

1
1

1
1

Figure 4: Rectangle replication example (n = 2).

steps succeed the growth of the trigger column:

1. The top I-tile of the trigger forces a change in the
current state of the counter from P to I . If the
counter has reached the maximum value of 2k −
1, the assembly process stops. Otherwise, a new
counter column encoding the incremented counter
value gets assembled.

2. The new counter column continues with J-tiles
downwards, until it reaches the bottom of the I-tile
column.

3. Next, the following four assembly processes happen
somewhat in parallel: (i) The special tile J3 initiates
the assembly of a full square to the right and below
J3. (ii) A new rectangle replica is assembled on
top of the square. (iii) The counter propagates its
current value along the top of the rectangle replica.
(iv) The progress line runs alongside the bottom of
the rectangle replica, at the end of which it initiates
the growth of a new trigger column. At this point,
a new I-tile column starts growing and the process
repeats.

As a running example, Fig. 4 illustrates a self-assembly
system that creates two replicas of a given rectangle R.
So we have the following result.

THEOREM 3.1. For any given rectangle R and positive
integer n > 0, R can be replicated exactly n times using
O(log n) tiles in one stage only.

3.2 Arbitrary Genus-0 Polygons. This section is con-
cerned with assembling exactly n copies of a given tile
structure, P , of genus-0 and some minimum feature
size. We define the feature size of P as follows. Let
d∞(a, b) = max(|ax − bx|, |ay − by|) be the distance
between two points a and b using the L∞ metric. Then
the feature size of P is the minimum d∞(a, b) value such
that a, b are points on two non-adjacent edges of P .

For ease of presentation, we assume that n = 2k, for
some integer value k ≥ 1; we will later discuss how this
assumption can be eliminated. Our construction is based
on the following assumptions regarding P : (a) All glues
on the boundary of P have a bond strength of 1 and are
of the following types: northern tile edges have glue n
southern edges have glue s, eastern edges have glue e,
and western edges have glue w. Refer to Figure 6a. (b)
The feature size of P is 5. The need for this requirement
will become clear shortly. (c) P is non-rectangular (i.e.,
it has at least one reflex vertex.

The replication of P consists of two phases. In a first
phase, we construct a frame for P , whose inner boundary
follows the dents and turns of P . The frame consists of
two layers, one RNA layer hugging P and one DNA layer
hugging the RNA layer. The RNA layer gets disintegrated
in a BREAK operation, leaving the DNA frame.

(b)(a)

P

RNA frame
DNA frame

Figure 5: (a) Dent two units wide in P . (b) Dent leveled
off in the interior of DNA[RNA[P]].

Observe that with too low a feature size, features of
P may be smoothed over in the DNA frame. For example,
the dent two units wide in Fig. 5a is leveled off in the
surrounding DNA frame (as shown in Fig 5b), making
it impossible to recreate the shape of P using the shape
of the frame only. To prevent this, we require the RNA
layer surrounding P to have a minimum feature size of 3,
which means requiring a minimum feature size of 5 for P
since the feature size can decrease by at most two when
the RNA layer is added.

In a second phase, we use the DNA frame to create
a copy of P . We do this by adding two layers of RNA
tiles inside the DNA frame, to construct a frame for a
smaller version of P , which we refer to as P1. We then
completely fill in this frame with DNA tiles to form P1.
ABREAK operation destroys the two surrounding RNA
layers, separating P1 from its frame. We then add a DNA
layer around P1, turning it into a copy of P . As a last step,
we line the interior of the DNA frame with DNA tiles to
prevent it from participating in subsequent iterations of
the replication process. By deactivating the used frame,
we ensure that the number of copies exactly doubles in
each iteration. An outline of these assembly steps is given
in Table 1. A running example, is given in Fig. 6a.

3.2.1 Tile Set S0 for RNA[P]. We start by defining
the tile set S0 used in assembling RNA[P], which is
composed of P and an RNA-layer surrounding P . The

General Replication Process(P)

Phase 1: ADD tiles to construct a DNA frame for P :
1.1 Surround P with an RNA-layer. Call the result

RNA[P]. (See Fig. 6b.)
1.2 Surround RNA[P] with a DNA-layer. Call the

result DNA[RNA[P]]. (See Fig. 6c.)
1.3 Destroy all RNA tiles in a BREAK operation.

This step separates the outer DNA frame and P
from DNA[RNA[P]]. (See the outer DNA frame
in Fig. 6d.)

Phase 2: ADD tiles to fill in the DNA frame to create
a copy of P :
2.1 Assemble an inner RNA-layer alongside the in-

ner boundary of the DNA frame. Call the result
DNA[RNA]. (See Fig. 7a.) (Note that the glues on
the inner boundary of DNA[RNA] cannot match the
glues on the outer boundary of P , because if the
same glues were used, then the original P (which is
floating in the tile soup) may bond to the interior of
DNA[RNA] and fill the frame. It is because of this
that we add a second RNA layer instead of imme-
diately creating a copy of P using the DNA[RNA]
frame.)

2.2 Assemble a second inner RNA-layer alongside the
inner boundary of DNA[RNA]. Call the result
DNA[RNA[RNA]]. (See Fig 7b.)

2.3 Fill in the interior of DNA[RNA[RNA]] with DNA
tiles. Call the result DNA[RNA[RNA[P1]]].

2.4 Destroy all RNA tiles in a BREAK operation.
This separates the outer DNA frame and P1 from
DNA[RNA[RNA[P1]]]. (See Fig. 7c.)

2.5 Add an outer layer of DNA tiles around the bound-
ary of P1, thus turning P1 into a replica of P . (See
Fig. 7d.)

2.6 Deactivate the DNA frame by lining it with DNA
tiles. (This step is designed so that the deactivation
layer can never form on new DNA frames resulted
from step 1.3 above.)

Table 1: Main steps of the replication process.

tiles in S0 are divided into four subsets, depending on the
role they play in the assembly of the RNA-layer: convex
corner supertiles, reflex corner supertiles, horizontal edge
tiles and vertical edge tiles.

Convex Corner Supertiles. S0 contains four con-
vex supertiles, one for each type of convex corner: north-
west (Cnw), north-east (Cne), south-east (Cse) and south-
west (Csw). The corner tile of each supertile has one of
its outer edges marked with a special glue: α1 for Cnw,
α2 for Cne, α3 for Cse and α4 for Csw (see Figure 8a).

Reflex Corner Supertiles. S0 contains four reflex
supertiles, one for each type of reflex corner: south-
east (Rse), south-west (Rsw), north-west (Rnw) and east-
north (Ren). Each reflex supertile has one of its inner

CwnCwn

Vw
Vw Ve

Ve
Ve
Ve
VeVw

Vw

Vw
Vw

Vw
Vw
Vw

Vw

Vw
Vw
Vw
Vw

Csw
Csw

Ve
Ve

Hn

Hs

(b)

Hn Hn Hn Hn

Csw

Vw
Vw

Rws

Cne

Ve
Ve
Ve

Csw

(a)

w
w
w

w
w
w
w

w
w

e
e

e
e
e

n n nnn

sss s s

n n nnn

w
w
w

w
w
w

e
e

e
e
e w

w
w

w
w

e
e
e

e

e
e
e

e
e
e

sss s s sss s s

Vw

Cne
Cne
Ve
Ve

Hn Hn

Ve
Ve
Ve

CesCesHsHsHs

Rse

Ve
Ve

CesCesHsHsHs

PP

Cne

P

(d)(c)

w
w
w

w
w

e
e
e

e

e

rn rn rn rn rn

re
re
re

rw
rw
rw

rn

rn rn rn rn rn

re
re
re
re
re
re
re
re
re
re
re
re
re
re
re

rw
rw
rw

re
re
re

rs

rs rs rs rs rsrs rs rs rs rs

rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw

Hn Hn Cne

Cne
Ve
Ve

Hn

Ren Rnw

Vw Ve
Ve
Ve
Ve
Ve
Ve

Hn
Cne

Ve
Ve
Ve

Hn

Ve
Ve
Ve
Ve

CneHn

CesCesHsHsHsCsw

Vw
Csw

Vw
RwsRse

Ve

CesCesHsHsHs

Vw
Vw

Vw
Vw

Vw
Vw
Vw
Vw

Vw
Vw
Vw
Vw

Csw

Csw

Vw

Cwn
Cwn
Cwn Cne

Ren Rnw

Cwn
Cne

Ces
Csw

Ces
Csw

n n nnn

Ren
Ren

Rnw
Rnw

Rws
RwsRse

Rse

CwnCwnCwnCwn Cwn
Cne

Csw
Ces

Csw

α1
α2

β4
β3

α1
α2

β2
β1

α3
α4

α3

rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw

α1 rn rn rn
α2

re
re
β4

rw
rw
β3rn

rn rn rn
α2

re
re
re
re
re
re
re
re
re
re
re
re
re

rs rs rsrs rs rs
α4α4

α3

re
re

α3

rw
rw

rs β2β1

Hn
Vw

Hs
Ve

rn

rw

rn

re rw

rn rn

re

re

rsrs

rwre

rsrs

rw

α4

α1

Vw

Hn Cwn

Vw Cne

Hn

Ces

Ve

Hs

Ve

Hs

V’w
H’n

V’w
H’n

V’e
H’sH’s

V’e

Figure 6: Phase 1: (a) P (b) RNA[P] (c) DNA[RNA[P]]
(d) DNA Frame.

P1

(b)(a)

(d)(c)

Rnw

Vw Ve
Ve
Ve
Ve
VeVw

Vw

Vw
Vw

Vw
Vw
Vw

Vw

Vw
Vw
Vw
Vw

Csw

Ve
Ve

Hs

Hn Hn Hn

Ren

Hn

Vw
Vw

Rws

Ve
Ve
Ve

Csw

Vw

Ve
Ve

Hn Hn

Ve
Ve
Ve

CesHsHsHs

Rse

Ve

CesHsHsHs

Ren Rnw

RwsRse

un un un un un

uw

uw
uw

un

ue
ue

ue
ue

ue
ue

ue
ue

ue

ue

ue

usus

uw

uw
uw

us us usus us

ue

ue
ue

ue

ue
ue

uw
uw

uw
uw

uw
uw

uw
uw
uw

uw

uw

un

j
j
j
j
j
j

j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j

k
jj j j j j j j

P Replica

CwnCwn

Cwn

CneCne

Cne

Ren

CwnCwn

Cwn

CneCne

Cne

Ces
Ces

CswCsw

Rws

Rse

Ces

Ces

Csw Csw

λ1
λ2

μ4
μ3

λ1
λ2

λ3

λ4

μ2
μ1

λ3
λ4

un

usus

unλ1
λ2

λ1
λ2

λ3

λ4
λ3

λ4

uw
uw

uw
uw

uw
uw

uw
uw
uw

uw

uw

ue
ue

ue
ue

ue
ue

ue
ue
ue

ue

ue

ue

ue
ue

ue

ue
ue

uw

uw
uw

uw

uw
uw

μ4 μ3

μ2μ1

un un un un un

us us usus us

k

k k k

δ2tsts

te
δ1

ts

tntnδ4
Hn

Rnw

δ3

tw
tw

tn

γ1 tntn γ2tn

te
te

Vete

γ1 tntn γ2tn
te
te
te

tw

te
te
te
te
te
te
te
te
te

γ3
te

tsts tsγ4
Vw tw

tw
tw

te

γ3
te

tsts tsγ4
tw
tw
tw
tw
tw
tw

tw
tw
tw
tw
tw
tw
tw

k

k
k
k

k
k

k
k
k

k
k

k
k
k

k
k
k

k
k
k

k kkkk

k k

Figure 7: Phase 2: (a) DNA[RNA] (b) DNA[RNA[RNA]]
(c) P1, smaller replica of P (d) Exact copy of P .

tile edges marked with a special glue: β1 for Rse, β2 for
Rsw, β3 for Rnw and β4 for Rne (see Figure 8b). These
special glues will mark the reflex corners of RNA[P] and
facilitate the assembly of the surrounding DNA frame.

Horizontal Edge Tiles. S0 contains two horizontal
edge tiles, Hn and Hs, used to assemble horizontal runs
alongside horizontal edges of P . Tiles Hn have south

(a) (b)

C C C

Crw re

rn

n
e

nw nw ne

neCnw w

Cne
n

rn

Csw

Csw Csw

w
srw

rs

Cse

Cse Cse

e
s re

rs

α1
α2

α3

α4

R R R

R

se se sw

swRse

R sw

Rne

Rne Rne

Rnw

Rnw Rnw

e

s

β1 β2

β3β4

s

nn

e w

w

y1

y2

x1

x2

y2
y1

x1

x2 Hx

V

y

(c)

rwre

rn

rs

w

s

n

e

n

e

1 x1

y2

2

Hx s2 x2

V

y

w

y1

1

Figure 8: Tile set S0 for RNA[P]. (a) Convex (C) corner
tiles. (b) Reflex (R) corner tiles. (c) Horizontal (H) and
vertical (V) tiles.

glue n and thus can only bond to north edges of P .
Similarly, tiles Hs have north glue s and thus can only
bond to south edges of P .

Vertical Edge Tiles. S0 contains two vertical edge
tiles, Ve and Vw, used to assemble vertical runs alongside
vertical edges of P . Tiles Ve have west glue e and
thus can only bond to east sides of P . Similarly, tiles
Vw have east glue w and thus can only bond to west
sides of P . Tiles H,V ∈ S0 are depicted in Figure 8c.
Note our convention that glue subscripts must match the
orientation of the edges’ outward-facing normals.

The surrounding RNA layer is assembled in two stages.

Stage 1: ADD(Ci, Ri ∈ S0), with i ∈
{nw, ne, se, sw}. In the first stage, corner tiles are added
to the mixture, and they attach to P at its convex and
reflex corners. For example, the group labeled Cnw in
Fig. 8a will bond to a northwest convex corner of P where
w and n glues meet. The four reflex corner tiles in Fig. 8b
each bond to one of the four types of reflex corners. For
example, Rse will bond at a reflex corner where s and e
glues meet.

Note that the requirement that the feature size ofP be
at least 5 guarantees enough room for corner supertiles,
and ensures that no two corner supertiles are adjacent.

Stage 2: ADD(Hi, Vj ∈ S0), i ∈ {n, s} and j ∈
{e, w}. In the second stage, the horizontal (H) and verti-
cal (V) tiles (depicted in Fig. 8c) are added to the mixture.
From the corner tiles, the H and V tiles incrementally
bond clockwise along the adjacent horizontal and verti-
cal edges of P until the layer is complete. The clockwise
assembly of the layer is enforced by the lack of glue on
some tile edges. For instance, the lowest south tile edge of
aCnw supertile has no glue; the natural glue to place there
is y1, but doing so creates a situation where the Cnw su-
pertile may bond in places where Vw is supposed to bond,
using the combined strength of the rw and the y1 glues.
Similar ideas hold for each of the other (convex) corner
tiles. For a specific example of RNA[P] layer, with all
RNA layer tiles labeled, see Fig. 6b.

Observe that the pattern of r glues on the outer
boundary of RNA[P] is analogous to the pattern of
glues on P , with the only exception at the corners of of
RNA[P]. At each corner c of RNA[P], the incident tile
edge clockwise from c is marked with a special glue (α
or β); the other incident tile edge has the null glue. These
special glues will help create and fill in the DNA frame in
subsequent stages.

3.2.2 Tile Set S1 for DNA[RNA[P]]. RNA tiles are
destroyed through a BREAK operation during each
iteration of the replication process, and thus may be
reintroduced to the mixture in subsequent replication
iterations (see the algorithm description from Table 1).
Unlike RNA tiles however, once DNA tiles are added
to the mixture, they persist throughout all subsequent
iterations of the replication process. For this reason, the
two stage technique used to assemble RNA[P] cannot
be used to assemble a DNA layer surrounding RNA[P].
Instead, the tile set S1 shown in Fig. 9 is used, and the
assembling of the DNA frame happens in one stage only:
ADD(S1).

Similar to S0, the tile set S1 consists of four subsets:
convex turn (C) supertiles, reflex turn (R) supertiles,
horizontal edge (H) tiles and vertical edge (V) tiles.
Unlike S0 however, the tile set S1 contains singleton
reflex tiles in place of the reflex supertiles in S0. The
reason for this is twofold. First, there is no need to mark
reflex corners of the DNA frame; subsequent stages will
only attempt to fill in the DNA frame, and therefore glues
on the outer boundary of the DNA frame are irrelevant to
our replication process. Second, the reflex tiles are added
to the mixture at the same time as H and V tiles, and
therefore they must be designed so that no races to bond
to one same tile occur. See Fig. 6(c,d) for an example of
DNA frame.

(a) (b)

C C C

C

nw nw
ne

ne

Cnw
α1

α4 α3

α2

x3

y’4

Hx n3 x3

(c)

Hx s4 x4

V

y

e

y4

4

V’

y

w

y’3

3

rn
rs

re

rw

y’3 rn

Cne

x’3

re

C Cse se Csex4

C

C

sw

sw

Csw

rw y4

rs

x’4

y3

RRse sw

Rne Rnw

β1

β2

β3

β4

y4 y3

x3

x4

H’n x’3

H’sx’4

V’

y’

e

4

V

y

w

3

Figure 9: Tile set S1 for DNA[RNA[P]]. (a) Horizontal
(H) and vertical (V) tiles. (b) Convex (C) corner tiles.
(c) Reflex (R) corner tiles.

We say that a layer of tiles satisfies the bond-cycle
property if each tile in the layer is bonded to the tile
that comes before and after it. It is important for our
DNA frame to satisfy the bond-cycle property, since it

must stand alone at temperature 2 after it gets separated
from the lining RNA layer. Observe that each R tile from
Figure 9b has one side with the null glue. The reason
for this is to guarantee that R tiles do not bond to reflex
corners of the RNA layer prematurely, which in turn will
guarantee the bond-cycle property for the DNA layer.
Also note the usage of the primed tiles H ′, V ′ ∈ S1,
intended to attach to convex supertiles at convex corners
of RNA[P]. Their role is to ensure a null glue on the
incident tile edge counterclockwise to each convex vertex
of RNA[P], a property to be exploited in subsequent
assembly steps. We now state without proof the following
result:

LEMMA 3.1. Any given shape A with feature size 3 and
pattern of outer glues as in Figure 6b, can be surrounded
at temperature 2 by a DNA layer that satisfies the bond-
cycle property, using O(1) tiles.

Proof. The feature size of 3 ensures room for a layer
surrounding A that preserves the shape of its boundary.
The tile set used to assemble the DNA layer is depicted
in Fig. 9.

The assembly starts when at least one convex corner
supertile T bonds with strength 2 to a convex corner of
A along the α, r glues. For ease of presentation, assume
that T = Cnw ∈ S1 bonds to a convex corner a of A.
This event creates the conditions for Hn tiles to assemble
incrementally alongside the horizontal edge ofA incident
to a (which extends clockwise fromCnw). The clockwise
assembly direction is enforced by the lack of a glue on the
vertical tile edge incident to a (see, for example, the top
left convex corner in Figure 6b).

Let (a, b) be the horizontal edge of A incident to a.
A run of Hn tiles assembles incrementally alongside the
top of (a, b), using the combined strength of the x3 and
rn glues, until the next corner b is reached. Two situations
are possible:

1. b is a convex corner. Note that the horizontal tile
edge incident to b has no glue; this forces the run
of Hn tiles to stall if no convex supertile Cne has
yet bonded to the vertical edge incident to b. Once a
Cne bonds (or if a Cne tile has bonded earlier), a tile
red H ′n connects the horizontal run to Cne using the
combined strength of the opposing x3, x

′
3 glues.

2. b is a reflex corner. As in the case of convex corners,
the horizontal tile edge incident to b has no glue,
thus preventing the horizontal run of Hn tiles from
extending further. The only tile that can bond in that
position is a reflex turn tile – in our context, Rnw,
along the x3 and β3 glues.

Observe that this layer forms clockwise starting from
each convex corner. Each H , V and R tile bonds to

the tile before it. The last H ′ or V ′ tile connecting
a horizontal or vertical run to the next convex corner
supertile bonds to both adjacent (super)tiles. It follows
that the DNA layer satisfies the bond-cycle property,
which allows it to exist independently.

We now show that, during the assembly of the DNA
layer, a tile attaches to the current structure only in the
conditions described above. In other words, C tiles only
attach at convex corners, R tiles at reflex corners, and H
and V tiles fill the gaps in between corner tiles.

First observe that H , V and R tiles share no pair of
glues that would enable one to play the role of another.
Similarly for R and C tiles. However, (super)tiles Cnw
and Hn have corresponding glues (rn, right x3), which
may potentially allow a Cnw tile to bond in places where
Hn is intended to bond. We will show that this is not
the case. Due to the clockwise nature of the assembly
process, an Hn tile bonds using either of the glue pairs
(left x3, rn) and (left x3, right x3). The glue pair (rn,
right x3) is never used in bonding Hn to the DNA layer,
since bonding with these two glues would imply that
the layer forms in a counterclockwise direction. This
guarantees that no conflict occurs between an Hn tile and
a Cnw tile.

The only other pairs of glues on Cnw that may
potentially bond it incorrectly during the forming of
the DNA layer are (y3, x3) and (y3, rn). We show by
contradiction that a (y3, x3) bonding is not possible;
similar arguments hold for a (y3, rn) bonding. Assume
without loss of generality that the first convex supertile
that bonds in the wrong place is Cnw (otherwise the
discussion would move symmetrically to another convex
supertile). Consider a tile T with north glue y3 that
contributes to the bonding of Cnw along glues y3 and x3.
Then the three tile positions immediately on top and to the
right of T must be empty, so that Cnw can fit in. Looking
at Figure 9, notice that the only candidates for T are Csw,
Rnw and Vw. We now consider each of these situations
in turn:

1. T = Csw or T = Rnw. By our assumption thatCnw
is the first supertile misplaced, T must have correctly
bonded at a corner of RNA[P]. This along with the
feature size of 3 guarantees that T bonded to a west
edge of RNA[P] that extends at least one tile edge
above T . Thus the tile space immediately above and
to the right of T contains a tile of RNA[P], so Cnw
cannot bond in that space.

2. T = Vw. The lack of glue on each tile edge
counterclockwise to a north-west corner of RNA[P]
guarantees that Vw does not touch a convex corner
of A, at the time Cnw attempts to bond on top of T .
But this means that the tile space immediately above
and to the right of T contains a tile of RNA[P], so

again Cnw cannot bond in that space.

By symmetry, these ideas apply to all other convex super-
tiles, showing that the tile set S1 properly constructs the
DNA layer. 2

3.2.3 Tile Set S2 for DNA[RNA]. The tile set S2 used
in assembling an inner RNA layer is depicted in Fig. 10.
We begin by defining some terminology for the inner
boundary of a layer. We call a corner c on the inner
boundary reflex if the angle at c interior to the region
surrounded by the boundary exceeds π; otherwise, the
corner is convex. We say that an inner reflex corner is a
north-west corner if its two perpendicular tile edges have
normals pointing into the layer that are oriented north and
west. Thus, each north-west reflex corner on a layer’s
outer boundary corresponds to a north-west reflex corner
on its inner boundary. Glue subscripts n, s, e, and w on
the inner boundary tile edges refer to the direction of the
edges’ normals that point into the layer.

Recall that the clockwise tile edge incident to each
inner convex and reflex corner of the DNA frame is
marked with a special glue (α or β, as in Fig. 6d). The
tile set S2 is designed so that the assembled inner layer
DNA[RNA] preserves this property: clockwise tile edges
incident to inner corners of DNA[RNA] are marked with
special glues. This will ensure that the pattern of glues
along the inner boundary of DNA[RNA] is analogous to
the pattern of glues along the inner boundary of the DNA
frame, so that a second inner RNA layer can be built
using a tile set similar to S2. Observe from Fig. 10 that
special glues αi and βi on the inner boundary of the DNA
frame correspond to special glues γi and δi on the inner
boundary of DNA[RNA].

(a) (b)

C C C

C

nw nw ne

neCnw

Cne

Csw

Csw Csw

Cse

Cse Cse

α1
α2

α3

α4

R

R

Rse

se

sw

Rse

Rsw
β1 β2

β3

γ1
γ2

γ3
γ4

δ4 tn

δ1

te

δ2ts

δ3

tw

te re

x2 x2

ts

Rsw
rs y1

y2

RneRne

β4

x1Rne

rny2

tn

R

R

nw

nw

Rnw

rw

y1

tw

x1

rw

x1

rn

re
x2

rs

y1

y2

H xH

y

V

V

y

(c)

tw

te

rn

rs

n s

e

w

ts

tn

re

rw

2x1

2

1

x2x1

y1

y2

Figure 10: Tile set S2 for DNA[RNA]. (a) Convex (C)
corner tiles. (b) Reflex (R) corner tiles. (c) Horizontal
(H) and vertical (V) tiles.

Similar to the assembly of an outer RNA layer, an
inner RNA layer is assembled in two stages.

Stage 1: ADD(Ci, Ri ∈ S2), with i ∈
{nw, ne, se, sw}. In a first stage, corner supertiles bond
to convex and reflex interior corners.

Stage 2: ADD(Hi, Vj ∈ S2), with i ∈ {n, s} and

j ∈ {e, w}. In a second stage, horizontal (H) and
vertical (V) tiles are added to the mixture to fill in the
gaps between corners of DNA[RNA].

Figure 7a shows an example of DNA[RNA] layer with
labeled tiles, corresponding to the DNA frame from
Figure 6d. So we have the following result.

LEMMA 3.2. Any given shape A with feature size 3 and
pattern of inner glues as in Figure 6d, can be lined at
temperature 2 by an RNA layer, using O(1) tiles.

3.2.4 Tile Set S2B for DNA[RNA[RNA]]. The struc-
ture DNA[RNA[RNA]] is formed by assembling a second
inner RNA layer lining DNA[RNA]. The tile set for this
second inner RNA layer can be generated from the tile set
S2 for the first RNA layer (depicted in Fig. 10) by replac-
ing glue labels rn, rs, re, rw by tn, ts, te, tw respectively,
tn, ts, te, tw by un, us, ue, uw respectively, and special
glues α, β, γ, δ by γ, δ, λ, µ respectively (with appropri-
ate subscripts). Since the same tile structure (with dif-
ferent glues) is used in assembling both DNA[RNA] and
DNA[RNA[RNA]], we refer to the tile set used in assem-
bling DNA[RNA] as S2A, and the tile set used in assem-
bling DNA[RNA[RNA]] as S2B. For a quick reference,
we summarize the glues on the inner and outer boundaries
of various layers in Table 2.

Layer
Tile Glues on Glues on

Template Inner Boundary Outer Boundary

Outer RNA layer S0 (Fig. 8)
rn, rs, rw, re,

n, s, w, e α1, α2, α3, α4,
β1, β2, β3, β4

DNA frame S1A (Fig. 9)
rn, rs, rw, re,
α1, α2, α3, α4 null
β1, β2, β3, β4

First inner RNA layer S2A (Fig. 10)
tn, ts, tw, te, rn, rs, rw, re,
γ1, γ2, γ3, γ4, α1, α2, α3, α4,
δ1, δ2, δ3, δ4 β1, β2, β3, β4

Second inner RNA layerS2B (Fig. 10)
un, us, uw, ue, tn, ts, tw, te,
λ1, λ2, λ3, λ4, γ1, γ2, γ3, γ4,
µ1, µ2, µ3, µ4 δ1, δ2, δ3, δ4

P1’s outer layer S3A (Fig. 11)
un, us, uw, ue,

j, k λ1, λ2, λ3, λ4

µ1, µ2, µ3, µ4

P ’s outer layer S1B (Fig. 9)
un, us, uw, ue,
λ1, λ2, λ3, λ4 n, s, w, e

µ1, µ2, µ3, µ4

DNA frame
S3B (Fig. 11) null

rn, rs, rw, re,
deactivation layer α1, α2, α3, α4,

β1, β2, β3, β4

Table 2: Summary of inner and outer boundary glues.

3.2.5 Tile Set S3 for DNA[RNA[RNA[P1]]]. To sim-
plify the process of assembling P1, we first assemble the
outermost layer of P1 by adding it as an inner layer of
DNA[RNA[RNA]], and then we fill it in with DNA tiles.

(a) (b)

R

R

Rse

se

sw

Rse

Rsw
μ1 μ2

μ3

ue

x’8 Rsw
us

y8

RneRne

μ4

x’7Rne

un

R

R

nw

nw

Rnw

uw

y’7

j

j

j

j

jj j

k

k

k

j

k k kk

kx8

y7

x7

y’8

λ1

Cnw

y7

Cne λ2x7

y8

Cse
λ3

x8Cswλ4

Hx n7 x7

(c)

Hx s8 x8

V

y

e

y8

8

V’

y

w

y’7

7

H’n x’7

H’sx’8

V’

y’

e

8

V

y

w

7

j
k

j
k

j

j

ue

uw

k

k

un

us

Figure 11: Tile set S3 for DNA[RNA[RNA[P1]]]. (a)
Horizontal (H) and vertical (V) tiles. (b) Convex (C)
corner tiles. (c) Reflex (R) corner tiles.

The tile set S3 used in assembling the outer DNA layer
for P1 is similar to the tile set S1 used in assembling the
DNA frame, but with the roles of C and R tiles switched
(since notches are formed at convex corners of the inner
boundary of DNA[RNA[RNA]], as opposed to reflex cor-
ners of RNA[P]). The tile set S3 used in assembling the
outer DNA layer of P1 is depicted in Fig. 11 (compare
this set with the one depicted in Fig. 9). Note that the
inner boundary of this DNA layer has two types of glue
only, j and k; glue j is on north and east tile edges, and
glue k is on south and west tile edges. This simple pat-
tern makes it easy to fill the interior of this layer using
two DNA tiles only, one with glue j and a second one
with glue k on all its sides. The following lemma follows
immediately from Lemma 3.1 and the similarity between
the tile sets S1 and S3.

LEMMA 3.3. The outer layer of P1 satisfies the bond-
cycle property.

Note that the interior of P1 has at least one corner,
until it is completely filled in. We call the resulting
structure DNA[RNA[RNA[P1]]], to indicate its actual
composition: the DNA frame, two inner RNA layers
and P1.

3.2.6 Completing the Replica of P . In the last step
of phase two, we dissolve the RNA tiles in a BREAK
operation, thus separating the DNA frame from P1. The
following lemma shows that P1 can exist independently
in the solution.

LEMMA 3.4. P1 is stable at temperature 2.

Proof. By Lemma 3.3, the outer layer of P1 satisfies the
bond cycle property. We now show inductively that each
tile in the interior of P1 is connected by an orthogonal
path of tiles to the outer layer of P1, with each bond on
the path of strength 2. Then the lemma follows.

For simplicity, let ∂P1 refer to the outer layer of P1.
We assume that time is divided into rounds, and in each

round one or more tiles bond to corners of the existing
structure. The induction is on the number of rounds it
takes to fill in ∂P1.

The base case corresponds to round 1. In this round,
a tile f bonds with strength 2 to a notch formed by two
tiles f1, f2 ∈ ∂P1. Then (f, f1) is a path of length 1 and
bond strength 2 connecting f to ∂P1, and similarly for
(f, f2).

Assume that the argument holds for all rounds up to
i ≥ 1, and consider round i + 1. The argument for this
case is similar to the one for the base case: in round i+1,
a tile f can only bond to a notch formed by two tiles f1
and f2, which must have bonded to the existing structure
in round j < i. By the inductive hypothesis, there is a
path p of bond strength 2 connecting f1 to ∂P1. Then
p ⊕ f is a path of bond strength 2 connecting f to ∂P1;
here ⊕ is used to denote the concatenation operator. 2

Note that the tiles in the interior of P1 may not be
bonded to each other on all four sides. Nevertheless,
Lemma 3.4 guarantees that P1 is stable at temperature
2. This property enables us to add an outer layer to P1,
turning it into a copy of P . To do so, first observe that the
pattern of outer boundary glues on P1 is identical to the
pattern of outer boundary glues on RNA[P] (see Fig. 7c
vs. Fig. 6b). Thus, in assembling a DNA layer around P1,
we can use the same tile set S1 used earlier to assemble
a DNA layer around RNA[P], with different types of
glue: (a) replace glues r, α, β by u, λ, µ respectively
(with appropriate subscripts), and (b) add glues n, s, e, w
to the outer boundary of the new layer. We denote this
tile set by S1B in Table 2.

3.2.7 Deactivating the DNA Frame. This final step is
necessary to prevent the current set of DNA frames from
making additional copies in subsequent iterations of the
replication process. We deactivate each DNA frame by
lining it with a layer of DNA tiles. The tile set used in
assembling this inner DNA layer is identical to the tile
set S3 from Fig 11 (used in assembling the outer layer of
P1), after substituting glues u, λ, µ by r, α, β respectively
(with appropriate subscripts), j, k by null,null, and x, y
by new unique glues. This ensures that no glue appears
on the inner boundary of the deactivation layer, and that
H and V tiles in this tile set cannot play the role of H
and V tiles used in any other tile set. In addition, we
use RNA tiles as corner tiles and DNA tiles for all other
tiles in the set, to enable the disintegration of all corner
tiles in a subsequent BREAK operation (after the inner
layer is complete). By destroying all corner tiles, we
ensure that new frames created in the next iteration of the
replication process do not get deactivated until the end of
that iteration (recall that the assembly of the deactivation
layer is initiated by corner tiles).

3.2.8 Main Result. So far we have assumed that the
input shape is non-rectangular (i.e., it has at least one re-
flex vertex). However, our tile set can be easily extended
to handle rectangular shapes as well, at the cost of a few
additional tiles.

Throughout this section we discussed the special
case when n is a power of 2. We now show how
to handle the general case when n is not a power of
2, using a variant of the double-and-add method. The
double-and-add method converts a non-zero binary string
b = bblognc+1 . . . b1 to base ten as follows. Start with
an integer t whose value is initially 1; at the end of the
method, t will have value equal to the base ten equivalent
of b. For i = blog nc . . . 1, double the value of t and then
add bi (a zero or a one) to t.

We use the same idea to create n > 0 copies of P .
Start with a soup containing a single copy of P . Let
b = bblognc+1 . . . b1 be the base two representation of
n. For i = blog nc . . . 1, we double the number of copies
of P in the soup using the assembly process described in
Table 1; if bi is one, we add one additional copy of P to
the soup. Thus we have the following result.

THEOREM 3.2. For any given genus-0 polygonal tile
structure, P , with feature size of 5 and positive integer
n > 0, P can be replicated exactly n times using O(1)
tiles in O(log n) stages.

4 Infinite Yield Replication
For the results that follow, we first show how to infinitely
replicate x-monotone shapes with a feature size of at
least 4 using O(1) tile types and O(1) stages. We then
consider the more general problem of infinite replication
of arbitrary genus 0 shapes. Our general construction is
able to replicate any genus 0 shape with at least Ω(log n)
feature size in O(1) tile types and O(1) stages.

4.1 x-monotone Shapes. In this section we present
our construction for the infinite replication of general
vertically convex shapes. Our construction proves the
following theorem:

THEOREM 4.1. There exists a staged replication with
RNA removal system with O(1) tile type complexity and
O(1) stages that will infinitely replicate any vertically
convex input shape whose faces have length at least 4.

In the remainder of this section we present an assem-
bly system that proves this theorem. For this construction,
all RNA tile types are shaded pink.

Stages 1, 2 and 3. The tile sets added in the first 3
stages of the assembly process are given in Figure 12.
The tiles added in stage 1 are all of type RNA and
cover the convex and concave corners of the input shape.
In stage 2, the four pink tiles in the left of Figure 12

finish a single layer coat of RNA tiles surrounding the
surface of the input polygon. The blue DNA tiles and the
remaining pink RNA tile create a rectangular encasing of
the input shape, as shown in Figure 13. The rectangular
encasing of the input shape is made of DNA tiles with
the exception of the RNA tile used to fill the vertical
columns corresponding to the edges of the faces of the
input polygon.

f

d

f

d

g

r

g

*

*
r

h

s

h

d d

s

ps
pn

pe pwpe
pn

pn
pw

pn
pe

ps
pw

a

a b

b

c c

c c

b a

c c

f

pna

a

pw

b

b

per s

r d
g h

r

r

d

d

g h

pw

ps
c'

c' c'

f'

ps

c' c'

pe

ps
c'

hb g a

g' h'

dr

r
*

s
*

g h

g hf f

f f

f'

d'

f'
d'

g'

r

g'

h'

s

h'

d' d'

*
r s

*

r s

*
r s

*

r s

*

t^

Stage 1

Stage 2 Stage 3

Figure 12: The above tile sets are added in stages 1, 2,
and 3. The six blue tile types are of type DNA, and the
rest are of type RNA.

Figure 13: After the first 3 stages, the input shape is
surrounded by a rectangular encasing of tiles, insulated
with a layer of RNA tiles.

Stages 4. In stage 4 the binary counting tiles from
Figure 14 grow across the top and bottom surfaces of the
rectangle assembly, incrementing the counter whenever a
star glue is encountered, which occurs at the edge of each
face of the polygon. Thus, the binary counter maintains a
fixed and distinct value for each of the different faces of
the input polygon. Unlike counters which must grow to a
set length, this counter is controlled by the surface of the
polygon, and thus can be implemented with only O(1)
tile complexity. The final width of the counter is 2dlog fe
where f is the number of faces of the input polygon.
Additional tiles are provided to even out the shape of the
counter into a rectangle. A conceptually identical set of
counter tiles as those shown in Figure 14 is applied to

the bottom face of the assembly as well. In stage 5, the
RNase enzyme is added to the assembly mixture. For
our assembly, the RNA tile types surround the shape and
divide the constructed columns of the filled in rectangle
at the points at which the level of the input shapes face
changes. The result, as shown in Figure 15, is the
breaking of the assembly into a collection of rectangles,
each crowned with a specific, distinct binary number.
While these rectangles are no longer connected, in some
sense they encode a description of the input shape as the
length and width of the rectangles denote the length and
depth of a face from the input shape. Our approach is to
now infinitely replicate each of these rectangles, and then
reassemble an infinite number of templates of the input
shape for replication by relying on the binary “barcode”
to help reassemble the rectangles in the proper order.

...

1t' t'

f

00' 0'

f

11' 1'

f

f f

f f hf f

1

t

t'

*
0 1' 1 0'

*f *
0 0'

* *f f h

1t t'

*f

00 0'

*f

11 1'

*f

*f

*f

**x

y

x

x

y y

*

yy 00

*

t'

g f
f

1t' t

h

x

h * g

00' 0

h

f

11' 1

h

h

* *

*

00' 0

h

h

1 0

f
f*

r * f f* g f f hf
f

* f f* g f f h

1t' t'

g

x

1 t'
g

x

t' 1t' t'
f

x

1 t'

x

t' 1t' t
h

x
1

t

t'

*
0 0'

*

y

00' 0'

g

f

00' 0'
g

f

00' 0'
f

f

0 0'

f

00'

f

0' 0'

1t' t'

f

x

1t' t'

f

x

1t' t'

f

x

1t' t'

f

x

00' 0
h

h
1t' t

h

x

0 1'

*f

*

1

1t t'

*f

*

11' 1'

g

f

11' 1'
g

f
1t' t'

f

x

11' 1'
f

f
1t' t'

f

x

11' 1'
f

f
1t' t'

f

x

11' 1
h

h
1t' t

h

x

1 0'

*

*

0

1

t

t'

*

0 0'

*

y

r
*

t'

Stage 4

Figure 14: The above tile set constitutes a self growing
set of binary counting tiles which increment once for each
face of the input shape, denoted by the pink tiles with glue
’*’. This tile set forms a counter on the north surface of
the rectangular encasing of the input shape. A similar tile
set is used to create a counter for the south side of the
encasing as well. The x and y glues are used to allow 0
bits to fill all columns of the counter up to the height of
the final column, thus making a rectangular shape.

Stages 6 and 7. In stage 6 we add a tileset designed
to create an infinite number of copies of an input rect-
angle. The tile set is given in Figure 16, along with an
example of the infinite pattern of the assembly in Fig-
ure 17. The tile set for this stage replicates any rectan-
gle, and is specifically designed to copy the identifying
binary strings for each rectangle as well. Thus, each of
the rectangles for each of the faces of the input polygon
causes the growth of an infinite supertile, each with in-
finitely many replica rectangles imbedded within. Stage
7 is an enzyme stage, which breaks each of the infinite
supertiles into infinitely many copies of the binary rect-
angles.

01 1

1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 10

1

0

1

0

1

0

1

0

1 1 1 1 1 1 10 0

0 00000 0

1 1 1 1 1 10 00000 0

1 1 1 1 1

0 0000

0 00000

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 00

0 00

0 00

1 1 10 0000 0 000 000 0 000000 00000 0 00

0 00000 0 00000 0 0

0 00000 0 00000 0 0

1 1 1 1

1 1 1 1

1 1 1 1

0000

0

1

0

0

1 1

0 0

0 0

0 0

00

00

00

1 1

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0000 0 0 1 1 1 1 11

0

1

0

1

0

1

0

1

0

1

0

1

1 11111 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

00

0

11 1 1 1

0 0

0 0

0 0

0 0

0

0

11 1

1 1 1 1 1 1 1

1 11111 1

0 0 0 0 0 00

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 10

1

0

1

0

1

0

1

0

1 1 1 1 1 10 0

00000 0

1 1 1 1 100000 0

1 1 1 1

0000

00000

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

00

00

00

1 10 000 0 000 00 0 0000000000 0 0

0 0000 0 0000 0 0

0 0000 0 0000 0 0

1 1 1 1

1 1 1 1

1 1 1 1

0000

0

1

0

0

1 1

0 0

0 0

0 0

00

00

00

1 1

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1

0

0

0

1

0

1

0

1

0

1

0

1

000 0 0 1 1 1 1 1

0

1

0

1

0

1

0

1

0

1

11111 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

11 1 1 1

0 0

0 0

0 0

0 0

0

0

11 1

1 1 1 1 1 1

11111 1

0 0 0 0 0 0

(a) (b)

Figure 15: (a) After stage 4, the input shape is contained
in a rectangle encasing with binary counters assembled
across the top and bottom surfaces of the encasing, de-
noting the number of north and south faces of the shape
respectively. (b) In stage 5, an RNase enzyme breaks the
encasing into a collection of rectangles, each with a dis-
tinct binary bar code.

0

r

a

a

r

a

b

b

0 01

r

a

b

10 10 0

b

b

1 11

b

1

b

t

b

1

s

f

f

q

q

q

w

f

w

f

w a

w

a

w

q

A

z

u

u

z

u

z

A

Aa

q

u

w z

u

v

v v

v r

u

u

r

u

u

r

A

w

u A

r

A

A

r

0

A

10'

A

1

A

0 1'

A

0'

r

a

a

r

a

c

b

0' 01'

r

a

b

01 01 0
c

0' 11

cb

b

1' 11

b

c

1' 00

b

v

v v

BB

a A

f

BB

w

f

B

f

1

x

1 1*

u

0

x

0 0*

u

1

x

1 1*

x

0

x

0 0*

x

0

x

0* 0'

x

1

x

1* 1'

x

0

x

0* 0'

u

1

x

1* 1'

u

0

x

0' 0'

x

1

x

1' 1'

x

0

x

0' 0'

u

1

x

1' 1'

u

w

Stage 6

Figure 16: The above tileset is added in stage 6 of the
construction. For each of the binary labeled rectangles,
the above set will grow an infinite chain of copies of each
rectangle, along with the correct binary label, with each
rectangle insulated by a layer of RNA tile types. The 16
white tile types and 3 blue tile types are of type DNA, and
the rest are of type RNA.

Stages 8, 9, and 10. Now that we have an infinite
number of copies of each of the binary rectangles, the
goal is to reassemble them all into infinitely many molds
to replicate the original shape. The key is to get the
rectangles to line up according to the order imposed
by their binary labels. To accomplish this, we add the
tiles from Figure 18. These tiles fill in the missing left
and rightmost column of each binary rectangle, as these
columns where intentionally removed by the previous
enzyme stage. The leftmost column attaches a binary
column that decrements the rectangles binary value by 1.
The right column simply copies the value of the counter.
Additionally, in the leftmost column of each binary label,
for each bit of the counter a single tile juts out 1 extra
column. For the ‘0’ bits, this tile occurs one position

0x

tx

0x

0 0 0

0 0 0

1 1 1

xxx

s

s

s

s

f f f

0

r

r

r

r

0

t

s

f

q
f

q

q

w
f

w

f

w
f

q

q

w

0 0

0 0

1 1

xx

f f f

w

f

w

f

f

w
f

w

f

w

f

f

w
f

q

q

w

f

f

w
f

q

w

w

w

w

q

0

r

a

b

00

v

b

0 00

b
1

b

t

b

1

a

r

a

v
a

r

a

v
a

r

a

v
a

w

a

w
a

w

a

w
a

w

a

w
a

w

a

w

q

Aa

q B
A

w

u A

w

f

u

w z

u

A

z

u A

f

u

w z

u u

z

u

z

A

z

u A

f

u

w z

u u

z

u

z

u

z

u

z

A

z

u A

f

v r

u

u

r

u

u

r r

u

u

r r

u

u

r

v r

u

u

r

u

u

r r

u

u

r r

u

u

r

v r

u

u
v r

u

u

r

u

u

r r

u

u

r r

u

u

r

r

u

u

r r

u

u

r r

u

u

r

r

A

A

r

r

A

A

r

r

A

A

r

r

A

A

r

0

x

0 0*

u

0

x

0 0*

x

1

x

1 1*

x

0

x

0* 0'

u

0

x

0* 0'

x

1

x

1* 1'

x

0

x

0' 0'

u

0

x

0' 0'

x

1

x

1' 1'

x

0

x

0' 0'

u

0

x

0' 0'

x

1

x

1' 1'

x

0

A

0'

A

0

0

A

0'

A

0

11

A

1'

A

f

BB

f

w

f

w

w

w

0

r

a

b

00

v

b

0 00

b
1

b

t

b

1

a

r

a

v
a

r

a

v
a

r

a

v

w

a

w

a

w
f

w

f

w
f

w

f

w

f

w

f

w
f

w

f

w

f

w

f

w
f

BB

f

BB

f

BB

a

w

a

w
a

w

a

w
a

w

a

w

B

a A

B

0

v

0

1

v

v

v

w

w

w

w

u A

w
u

z

u

A

z

u A

f

u

z

u u

z

u

z

A

z

u A

f

u

z

u u

z

u

z

u

z

u

z

A

z

u A

f

r

u

u

r

u

u

r r

u

u

r r

u

u

r

r

u

u

r

u

u

r r

u

u

r r

u

u

r

r

u

u
r

u

u

r

u

u

r r

u

u

r r

u

u

r

r

u

u

r r

u

u

r r

u

u

r

r

A

A

r

r

A

A

r

r

A

A

r

r

A

A

r

0

x

0*

u

0

x

0*

x

1

x

1*

x

0

x

0* 0'

u

0

x

0* 0'

x

1

x

1* 1'

x

0

x

0' 0'

u

0

x

0' 0'

x

1

x

1' 1'

x

0

x

0' 0'

u

0

x

0' 0'

x

1

x

1' 1'

x

0

A

0'

A

0

0

A

0'

A

0

11

A

1'

A

f

ww

w

w

0

r

a

b

00

v

b

0 00

b
1

b

t

b

1

a

r

a

v
a

r

a

v
a

r

a

v

w

a

w

a

w
f

w

f

w
f

w

f

w

f

w

f

w
f

ww

f

ww

a

w

a

w
a

w

a

w
a

ww
f f f f

B
f

B
f f f

BB BB BB
a

B B

...

Figure 17: This is an example of the infinite replication of
the binary labeled rectangles by the tile set from Figure 16
that occurs in stage 6. In stage 7, the RNase enzyme is
added, breaking the infinite growth supertiles into infinite
copies of each of the original binary labeled rectangles,
modified such that the leftmost and rightmost binary
columns are missing.

u

0*

u

u

1*

x

x

0*

x

x

1*

x

0 101

A

0'

A

0

A

1'

A

1

v

u u u u

v

v

v

u

r

A

r

r

r
A

00*

00* 0'

1

x

1* 1'

0

x
0

x
1

x

0 0'

0

1

x

0'

1'

A

0'

A

0

A

0'

A

0

A

1'

A

1

u

0*

u

1

u

0*

u

1

u

1*

x

0

Ax

y
z

yy

x

yy

z
y

z
y

y

Ax

y
z

y

y

yyy

x

z

yy

x

z

yy

x

z
yy

z

yy

z

yy

z

yy

z

v

u u u u

v

u

r

A

r
A

11*

00* 0'

1

x

1* 1'

1

x
0

x
1

x

1 1'

0

1

x

0'

1'

u u

0'

1'

1

x
0

x
1

x

0'

1'

1

x
0

x
1

x

v

u u u u

v

u

r

A

r
A

00*

11* 0'

1

x

1* 1'

0

x
1

x
1

x

0 0'

1

1

x

1'

1'

u

0'

1'

0

x
1

x
1

x

v r

v r

v r

u

1*

x

0

x

0*

x

0

x

1*

x

1

A

1'

A

1

A

0'

A

0

A

1'

A

1

Ax

y
z

y

y

yyy

x

z

yy

x

z

yy

x

z
yy

z

yy

z

yy

z

yy

z
yy

z
yy

z
yy

z
yy

z

u

0*

u

1

u

1*

x

0

x

1*

x

1

A

0'

A

0

A

1'

A

1

A

1'

A

1

Ax

y
z

y

y

yyy

x

z

yy

x

z

yy

x

z
yy

z

yy

z

yy

z

yy

z
yy

x

z
yy

z

y

y

y

y y

y

xx

stage 8 stage 9 stage 10

Figure 18: In stage 8, the above tile set is added to
form a tooth like surface on the left and right side of
each binary labeled rectangle. For each binary label,
the tooth pattern is unique, ensuring that only the unique
complement to the pattern will permit a rectangle to get
close enough for attachment. The tiles added in stages 9
and 10 act as toothpaste, creating an affinity for binary
labeled rectangles to attach at temperature 2, given that
their teeth interlock correctly.

lower than for the ’1’ bits. A similar pattern occurs in
the rightmost column, but the ‘0’ bits have higher tiles
than the ‘1’ bits in contrast.

The effect of this tile growth is that each binary label
now has a jagged set of teeth whose geometry uniquely
identifies the blocks binary label. Further, each block has
a left binary value that is one less that the right binary

A

u

r'

m*

v'

m'

u

r'

m'

Stage 11
A

v

u

r

A'

v'

u'

r'
y

y

y'

y'u
v

y y'
r

A

qn

qe

qe

qw

qw

qn

x

qs

y'

qw

qw

qs

x

x x

qn qn qn qn

qs

x'

A'

x'

r'

qs

y'

qe

qs
x'

qe v'
u'

x'

qs

Stage 12

y'

y'

r' qw

qs

qe
qn

x' x'

x x

y

y

v

u'

uStage 13 qn
qw

qn
qe

qs

qw

qs

qe

z' z'

z' z'

z'
z'

z'
z'

z*

z*
qw z

z'

z'
qez

z' z' z* z*

z

z

z
zz

z
qs

qnStage 14
Stage 15

Figure 19: The tiles in stage 11 simply attach the top and
bottom portions of the reassembled frame together. Once
connected, the tiles in stage 12 are added to cover the
internal corners of the assembled frame, followed by the
stage 13 tiles to complete an inner coat of RNA tiles. The
stage 14 and 15 tiles fill in the frame with DNA tiles to
create a new copy of the original input shape. The glue
types m′ and m∗ are not listed in the tile sets described
as they are special glues that must occur on the teeth of
binary labels from the bottom counters, whose tiles where
not detailed.

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 10

1

0

1

0

1

0

1

0

1 1 1 1 1 10 0

00000 0

1 1 1 1 100000 0

1 1 1 1

0000

00000

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

00

00

00

1 10 000 0 000 00 0 0000000000 0 0

0 0000 0 0000 0 0

0 0000 0 0000 0 0

1 1 1 1

1 1 1 1

1 1 1 1

0000

0

1

0

0

1 1

0 0

0 0

0 0

00

00

00

1 1

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1 1

0 0

0 0

1

0

0

0

1

0

1

0

1

0

1

0

1

000 0 0 1 1 1 1 1

0

1

0

1

0

1

0

1

0

1

11111 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

11 1 1 1

0 0

0 0

0 0

0 0

0

0

11 1

1 1 1 1 1 1

11111 1

0 0 0 0 0 0

Figure 20: After stage 14 there are infinitely many as-
sembled replicas of the input shape contained in frames
as shown in this example. The final stage of the construc-
tion adds the RNase enzyme to release the infinitely many
replicas of the input shape.

value. As the jagged pattern of teeth is opposite from
left to right, the teeth of two binary blocks whose original
rectangles where adjacent for the original assembly mold
will have perfectly interlocking teeth. In contrast, any
two blocks that do not represent binary numbers that
are increments of one another are guaranteed to have at
least one mismatching tooth, preventing the blocks from
getting close to one another.

Now that we have the interlocking teeth in place, we
add the tiles from Figure 18 in stages 10 and 11. These
tiles simply attach glues to the binary rectangles giving

any rectangle an affinity to attach adjacent to any other
rectangle. However, due to the interlocking geometry of
the previously attached teeth tiles, that affinity can only
be realized by originally adjacent rectangles, ensuring
that the unique, increasing binary counter order of block
attachment is the only possible assembly. The final result
is the assembly of an infinite number of copies of the
original frame used to encase the input shape, broken into
two pieces, a top and a bottom. All that remains is to
connect the two pieces and fill in the infinite count molds.

Stages 11, 12, 13, 14, 15, and 16. Stage 11 adds the
7 RNA tiles from Figure 19 which reconnects the bottom
and top halves of the reassembled frames of the input
shape. Once these are assembled, stages 12 and 13 coat
the inside of the assembled frame with a layer of RNA
tiles. Stages 14 and 15 fill in the frame with DNA tile
types. Finally, in the final stage 16 the RNase enzyme is
added which breaks the infinitely many assembled replica
shapes out of the assembled molds. An example of the
final assembly after stage 15 is given in Figure 20.

4.2 Genus-0 Shapes.

THEOREM 4.2. Any given genus-0 polygonal tile struc-
ture P , with n corners and feature size Ω(log n), can be
replicated infinitely using O(1) tiles and O(1) stages.

The algorithm is complicated, with several high-
level steps each consisting of several stages. The figures
illustrate the simulated execution of some of the steps
on a simple example, as computed automatically by a
computer program. (Light color indicates RNA tiles; dark
color indicates DNA tiles. Unlabeled edges denote the
null glue.)

0. Suppose that the given shape has strength-1 glue o
on all sides. The algorithm will operate entirely at
temperature τ = 2. Let n denote the number of
corners in the given shape, and let ` = dlog2 ne. We
assume that ` (or an upper bound thereof) is known
and that the feature size is larger than 3`+ 10.

1. Mark one tile edge, namely, the top edge of the
leftmost topmost tile; refer to Figure 21.

2. Cover the boundary with identifying marks at
corners; refer to Figure 22. We add a single layer
around our shape, distinguishing edges near the
corners and in particular the leftmost topmost corner.

3. Walk around the given shape to produce a mul-
tipart mold by mixing in all the following tiles at
once.

(a) Start walking at the leftmost topmost corner
by adding one RNA tile each at glues t2 and t3,

with glue on the right side to start a growing
binary counter at 0.

(b) Copy the bit string into DNA in the next
column.

(c) Increment the counter in the next column,
possibly growing by one bit. We use essen-
tially the growing binary counter construction
from the x-monotone case as shown in Fig-
ure 14, which writes a bit only every other row.
We also mark the most-significant bit with a
special type of glue (1∗ instead of 1), and in-
clude a blank (non-bit) row below the least-
significant bit.

(d) Repeatedly copy the counter to the outside
and to the right along the edge, continuing as
long as we have the edge glue e. The construc-
tion, shown in Figure 23, scans alternately up
and down to route the bits in turn to the outside
of columns, while at all times transferring the
bits along their own rows.

(e) Turn right at convex corners upon detection
of a c1 or c2 glue. Refer to Figure 24.

(f) Turn left at reflex corners. In fact, the con-
struction in Step 3d simply crashes into a wall
at a reflex corner. We can detect this because
the outside of the counter becomes adjacent to
an edge glue e. This adjacency triggers the
construction in Figure 25, which transfers the
outside copy of the counter to the next edge
of the shape. Though not shown in the figure,
we also add tiles to fill in the bounding box of
the construction, forming a rectangle of width
3`+O(1) and length roughly equal to the edge.

(g) Immediately after every corner turn, copy the
bit string into RNA in the next column, then
as in Step 3b, copy the bit string into DNA in
the following column, and increment the bit
string in DNA in the next column.

4. Break apart the multipiece mold and the original
shape by applying the enzyme. The result is a
rectangle for every edge, with counter labels on two
incident sides, which express a code for how to put
the pieces back together.

5. Infinitely replicate the rectangles while preserving
their two incident labeled sides. This construction is
a modification of rectangle replication from the x-
monotone case as shown in Figure 17.

6. Re-assemble the molds. This three-stage construc-
tion is similar to Figure 18 from the x-monotone

add

e
u u

e
u u

e
u u

e
u u

e
u u

u
0

u

e
u u

e
u u

e
u u

e
u u

e
u u

1∗
u

e
u u

u
u

e
u u

e
u u

e
u u

e
u u

e
u u

e
u u

u
0

u
e

u u
e

u u
e

u u
e

u u
e

u u

u
1

u

e
u u

add
0

0 0′
e

1
1 1′

e

1
1 1′

0

1
1 1′

1

0
0 0′

1

0
0 0′

0

1̂∗
1∗ 1

0

1̂∗
1∗ 1

1

0̂∗
0∗ 0

0

0̂∗
0∗ 0

1

0̂
1x 1x

0

1̂
1x 1x

1

add
0̂

0x 0x

0

1̂
0x 0x

1

0
~1 ~1′

0

1
~1 ~1′

1

0
~0 ~0′

0

1
~0 ~0′

1

r
~0 0′

e

r
~1 1′

e

r
~0 0′

r

r
~1 1′

r

1̂∗
1x 1

r

0̂∗
0x 0

r

add
x̂

1 1x

↓
x̂

0 0x

↓
x̂

1x 1x

∗
x̂

0x 0x

∗
↓

0′ 0↓
↓

1′ 1↓
∗

0′ ~0↓
∗

1′ ~1↓
∗

~0′ ~0∗
∗

~1′ ~1∗

mix, filter
to maximal

larger than 2

0
0 0′

e

0
0 0′

e

x̂
1x 1x

∗
r

~0 0′
r∗

1′ ~1↓

0̂
1x 1x

0

∗
~1′ ~1∗

↓
0′ 0↓

x̂
1x 1x

∗

e
u u

1
1 1′

0

u
0

u

1̂∗
1∗ 1

0

e
u u

0
0 0′

e

∗
0′ ~0↓

∗
~0′ ~0∗

↓
1′ 1↓

e
u u

e
u u

1
1 1′

0

e
u u

0
0 0′

e

∗
~1′ ~1∗

↓
0′ 0↓

x̂
1x 1x

∗
1

~0 ~0′
1

↓
0′ 0↓

0̂
1x 1x

0

↓
1′ 1↓

x̂
1 1x

↓
0

0 0′
1

e
u u

∗
0′ ~0↓

1̂
1x 1x

1

e
u u

0
0 0′

e

↓
0′ 0↓

r
~0 0′

e

x̂
1x 1x

∗

∗
1′ ~1↓

0
~0 ~0′

0

e
u u

r
~1 1′

r

0
0 0′

1

∗
~0′ ~0∗

e
u u

1̂∗
1x 1

r

↓
0′ 0↓

e
u u

0
0 0′

e

1∗
u

0
~0 ~0′

0

0
0 0′

1

∗
~0′ ~0∗

0̂
1x 1x

0

∗
~1′ ~1∗

x̂
1x 1x

∗

1
1 1′

0

e
u u

u
0

u

0
0 0′

e

∗
~0′ ~0∗

↓
1′ 1↓

e
u u

1
1 1′

0

x̂
1 1x

↓
0

~0 ~0′
0

∗
0′ ~0↓

e
u u

1̂
1x 1x

1

↓
0′ 0↓

x̂
1x 1x

∗
1

~0 ~0′
1

↓
0′ 0↓

0̂
1x 1x

0

↓
1′ 1↓

e
u u

0
~1 ~1′

0

e
u u

e
u u

r
~0 0′

e

x̂
1x 1x

∗
r

~0 0′
r∗

1′ ~1↓

0̂
1x 1x

0

e
u u

1
1 1′

0

0̂
1x 1x

0

e
u u

∗
~0′ ~0∗

1̂∗
1x 1

r

↓
0′ 0↓

0
0 0′

e

∗
0′ ~0↓

∗
~0′ ~0∗

u
1

u

1
1 1′

0

e
u u

x̂
1x 1x

∗

e
u u

0
0 0′

e

↓
0′ 0↓

↓
0′ 0↓

x̂
1x 1x

∗
1

~0 ~0′
1

↓
1′ 1↓

1
1 1′

0 ∗
0′ ~0↓

x̂
1 1x

↓

e
u u

∗
0′ ~0↓

0
~1 ~1′

0

1̂
1x 1x

1

u
u

0
0 0′

e

↓
0′ 0↓

↓
0′ 0↓

↓
1′ 1↓

0
~1 ~1′

0

e
u u

r
~1 1′

r

0
0 0′

1

e
u u

Figure 23: Simulation of Step 3d. For improved visibility, we do not
display the blank rows in between bit rows.

add

1∗
u

u
c1

C1
c2

u
x

u u
0

u c1
0

u u
x

u u
x

u u
1

u u

add
0

a c2

0

1
a c2

1

0
a a

0

1
a a

1

x
a a

x

0∗
a

0∗

add
1∗

a
1∗

←
↑ 0

0

←
↑ 1

1

←
0 0
C1

←
1 1
C1

←
0 0↑

add
←

1 1↑
↓↑ ↑↓

↑← x
←

i← ←
j

i↓ ←
←

i→ ↓↓

add
j

0 0
i

j
1 1

i

0↑ ↑
0

1↑ ↑
1

0↑ →
0

1↑ →
1

add
0∗ ↑
0∗

1∗ ↑
1∗

0∗→
0∗

1∗→
1∗

0∗
0∗

1∗
1∗

add 0∗ 0∗
i

1∗ 1∗
i

0∗ 0∗↑ 1∗ 1∗↑

mix, filter
to maximal

larger than 2

↓↑ ↑↓

1∗ ↑
1∗

←
0 0
C1

↓↑ ↑↓

i← ←
j

x
u u

1∗ 1∗
i

0↑ ↑
0

i← ←
j

0
u u

1∗
1∗

↓↑ ↑↓
↓↑ ↑↓

i→ ↓↓

1
a a

1

x
a a

x

0
a c2

0

1∗ ↑
1∗

1∗ 1∗
i

↑← x
←

↓↑ ↑↓

i↓ ←
←

j
1 1

i

1∗ 1∗
i

1∗
u

↓↑ ↑↓

1∗ 1∗
i

1∗ 1∗↑

j
0 0

i

u
c1

←
↑ 0

0

j
0 0

i

x
u u

x
a a

x

←
1 1↑

1∗ 1∗
i

x
u u

←
↑ 1

1

←
↑ 0

0

i↓ ←
←

i→ ↓↓

i← ←
j

j
0 0

i

i→ ↓↓
1↑ →
1

1∗
a

1∗

0↑ ↑
0

1∗ ↑
1∗

i← ←
j

↑← x
←

1∗ ↑
1∗

↑← x
←

x
a a

x

j
0 0

i

i↓ ←
←

0↑ →
0

1∗→
1∗

i← ←
j

C1
c2

u

0↑ ↑
0

↓↑ ↑↓

0
a a

0

i← ←
j

1∗ 1∗
i

1
u u

1∗ ↑
1∗

j
1 1

i

↓↑ ↑↓

↓↑ ↑↓

←
0 0↑

1↑ ↑
1

0
u c1

Figure 24: Simulation of Step 3e.

case, with the addition of “gums” to prevent teeth se-
quences of different lengths from attaching to each
other.

(a) Attach three layers of RNA gums to the
most-significant bits at the end of each edge.
For reflex corners, we build a 1 × 3 column
that attaches at the 1∗ glue and the adjacent
glue from the filled bounding box. For convex
corners, we build a 2 × 2 box with a 1 × 1
tab that attaches to the 1∗ glue and the incident
side.

(b) Attach RNA teeth to remaining bits so that
pieces fit together. Specifically, at the begin-
ning of each edge, attach a tooth to each 0 bit
and just above each 1 bit; and at the end of each
edge (after the corner turn and increment), at-
tach a tooth to each 1 bit and just above each 0
bit.

(c) Attach two layers of RNA toothpaste to the
least-significant bits by building Ls that attach
to the edge glue e and the adjacent blank (non-
bit) row of the counter. The toothpaste sticks
with collective strength of 2, causing the pieces
of the mold to glue together, but only along
matching labels.

Because at most two teeth cluster together at any
point, they can never come in contact with the gums
of another piece and compatibly join. Thus only
equal-length labels can join.

7. Fill the molds:

(a) Fill the remaining RNA inner layer of each
mold, including what would be the two mark
tiles but now as RNA.

(b) Fill the remaining mold space with DNA.

(c) Apply the enzyme to break the molds back
apart, releasing the infinitely many copies of
the original shape and the rectangular pieces
of the mold.

5 Future Work
Many future directions stem from this work. A few are as
follows.

One interesting problem is how to magnify or minia-
turize a given input shape by a specified magnification
factor. In fact, the infinite yield constructions in our pa-
per can be modified to scale up the replicated shape by a
given factor k at the cost of an additional O(k) tile com-
plexity. The more general problem of magnifying shapes
by given factors as efficiently as possible in terms of tile
and stage complexity is a direction for future research.

Another direction is applying the staged RNA en-
zyme model to the assembly of shapes from scratch. A
simple first result shows that this model can assemble
thin lines more efficiently than the standard model can
achieve in terms of tile complexity. Can more interesting
shapes or computable patterns be built efficiently under
this model?

In terms of the shape replication problem, are there

add
↑∗ e
0̂

↑∗ e
1̂

↑∗ e
x̂

i∗ ∗
0̂

i∗ ∗
1̂

i∗ ∗
x̂

i
m ∗

0̂∗
i

m ∗
1̂∗

i
n m

x̂

0↑ n
0̂

1↑ n
1̂

←
↑ 0

0

←
↑ 1

1

j
0 0

i

j
1 1

i

add
j

0∗ 0∗
i

j
1∗ 1∗

i

0′
0 ↑

1′
1 ↑

0∗
0∗
↑

1∗
1∗
↑

0
`

0′
1

`
1′

↑← `
j

i← ←
j

i↓ ←
←

i→ ↓↓
↓↑ ↑↓

0↑ ↑
0

1↑ ↑
1

add
0∗
↑ ↑

0∗
1∗
↑ ↑

1∗
0↑ ↑
0̂

1↑ ↑
1̂

0∗
↑ ↑

0̂∗
1∗
↑ ↑

1̂∗
0′′
↑ →

0

1′′
↑ →

1

0∗′′
↑ →

0∗
1∗′′
↑ →

1∗

←
↑ 0
0′′

←
↑ 1
1′′

←
↑ 0∗
0∗′′

←
↑ 1∗
1∗′′

mix, filter
to maximal

larger than 2

u
e

u

i↓ ←
←

↓
0′ 0↓

i↓ ←
←

1
1 1′

0
r

~0 0′
e

0
~1 ~1′

0

↓↑ ↑↓

x̂
1x 1x

∗

e
u u

x̂
1 1x

↓
∗

0′ ~0↓

↓
0′ 0↓

1
1 1′

0

i
m ∗

1̂∗
i∗ ∗
x̂

0
~1 ~1′

0

x̂
1x 1x

∗

e
u u

←
↑ 0
0′′

i→ ↓↓
i↓ ←
←

1∗
↑ ↑

1∗
↓↑ ↑↓

i← ←
j

1̂
1x 1x

1

∗
1′ ~1↓

0
0 0′

e

↓↑ ↑↓

i← ←
j

↓
0′ 0↓

e
u u

j
1 1

i

j
0 0

i

0
0 0′

e

i← ←
j

j
0 0

i
0′′
↑ →

0
j

1 1
i

∗
~0′ ~0∗

u
e

u

1′′
↑ →

1

j
1 1

i

1′
1 ↑

↓
1′ 1↓

e
u u

u
1

u

↓
1′ 1↓

i
n m

x̂

∗
~0′ ~0∗

j
0 0

i

↓
0′ 0↓

i← ←
j

i← ←
j

u
e

u
x̂

1x 1x

∗

0′
0 ↑

j
1 1

i

1
1 1′

0

e
u u

∗
0′ ~0↓

1
1 1′

0

1
1 1′

0

x̂
1x 1x

∗

j
0 0

i

0
0 0′

1

r
~0 0′

e

i← ←
j

0
0 0′

1

j
1∗ 1∗

i

e
u u

0↑ ↑
0

u
e

u

←
↑ 1
1′′

j
0 0

i

i← ←
j

0
0 0′

e
e

u u

↑∗ e
0̂

i→ ↓↓

e
u u

∗
0′ ~0↓

0′
0 ↑

0
0 0′

e

1∗
u

1̂∗
1x 1

r

i← ←
j

u
e

u

u
e

u
j

1∗ 1∗
i

↓
0′ 0↓

0↑ ↑
0̂

j
1∗ 1∗

i

x̂
1x 1x

∗

←
↑ 0

0

j
0 0

i

1∗
↑ ↑

1∗

x̂
1 1x

↓
∗

~0′ ~0∗
r

~0 0′
r

e
u u

↓↑ ↑↓

e
u u

∗
~1′ ~1∗

0̂
1x 1x

0

↓
0′ 0↓

x̂
1x 1x

∗

i← ←
j

i← ←
j

u
u

e
u u

i← ←
j

↓
1′ 1↓

0↑ ↑
0

i← ←
j

0↑ n
0̂

e
u u

j
1∗ 1∗

i

0̂
1x 1x

0

1↑ ↑
1

∗
0′ ~0↓

1
~0 ~0′

1

↑← `
j

u
0

u

↓
0′ 0↓

j
0 0

i

e
u u

1
1 1′

0

j
1∗ 1∗

i

u
e

u

j
0 0

i

i∗ ∗
x̂

u
e

u

0
0 0′

e

↓
0′ 0↓

i← ←
j

0
`

0′

0
0 0′

e
e

u u

i← ←
j

u
u

0
0 0′

e
e

u u

j
1∗ 1∗

i

e
u u

∗
~1′ ~1∗ ∗

0′ ~0↓
0

0 0′
e

i← ←
j

↓↑ ↑↓
1∗
↑ ↑

1∗

e
u u

j
0 0

i

0̂
1x 1x

0

i← ←
j

∗
1′ ~1↓

↓
0′ 0↓

j
0 0

i

1̂∗
1∗ 1

0

1∗′′
↑ →

1∗

e
u u

x̂
1x 1x

∗∗
~0′ ~0∗

1∗
↑ ↑

1∗

r
~0 0′

r

i← ←
j

j
0 0

i

0̂
1x 1x

0

↓↑ ↑↓

i← ←
j

1∗
↑ ↑

1̂∗
↓↑ ↑↓

u
e

u

j
0 0

i

e
u u

1
~0 ~0′

1
r

~1 1′
r

0
~0 ~0′

0

↓↑ ↑↓

j
0 0

i

↓
1′ 1↓

1̂
1x 1x

1

x̂
1x 1x

∗

i∗ ∗
0̂

j
1∗ 1∗

i

j
0 0

i

x̂
1 1x

↓
0

~0 ~0′
0

j
1 1

i

↓
0′ 0↓

↓↑ ↑↓

0̂
1x 1x

0

↓
0′ 0↓

↓↑ ↑↓
1↑ ↑
1̂

1∗
↑ ↑

1∗

j
0 0

i

1
1 1′

0

0
~1 ~1′

0

e
u u

i∗ ∗
1̂

i← ←
j

←
↑ 1∗
1∗′′

j
1 1

i

j
1∗ 1∗

i

j
1 1

i
u

e
u

u
e

u

∗
1′ ~1↓

u
e

u

e
u u

0
0 0′

e

↑← `
j

e
u u

↓
0′ 0↓

0
0 0′

e

u
0

u

1∗
1∗
↑

i← ←
j

0
~0 ~0′

0

1
`

1′

↓
1′ 1↓

e
u u

j
1∗ 1∗

i

↓↑ ↑↓

u
e

u

j
1∗ 1∗

i

0̂
1x 1x

0

↑← `
j

0
`

0′

1
~0 ~0′

1

∗
~0′ ~0∗

↓
1′ 1↓

1̂
1x 1x

1
0

0 0′
1

0
0 0′

1

i∗ ∗
x̂

r
~1 1′

r

j
0 0

i

i← ←
j

0↑ ↑
0

↓↑ ↑↓

j
1 1

i

1̂∗
1x 1

r

i→ ↓↓

add
0

x x
0

1
x x

1

0∗
x x

0∗
1∗

x x
1∗

0
x e

0

1
x e

1

0∗
x e

0∗
1∗

x e
1∗

mix, filter
to maximal

larger than 2

u
e

u

j
0 0

i

∗
1′ ~1↓

i↓ ←
←

1
~0 ~0′

1
r

~1 1′
r

0
~0 ~0′

0

i→ ↓↓

e
u u

∗
0′ ~0↓

i← ←
j

j
0 0

i

u
e

u

∗
0′ ~0↓

j
0 0

i

j
0 0

i

0
~0 ~0′

0

1
`

1′

↓
0′ 0↓

j
1∗ 1∗

i

↓
0′ 0↓

j
1 1

i

j
1 1

i

1∗
↑ ↑

1∗
↓↑ ↑↓

0
0 0′

e

1↑ ↑
1̂

∗
~0′ ~0∗

0
~1 ~1′

0

↓↑ ↑↓

1
1 1′

0

↓
1′ 1↓

↓
0′ 0↓

i← ←
j

i← ←
j

0
~1 ~1′

0

j
0 0

i

j
1∗ 1∗

i

j
1∗ 1∗

i

i← ←
j

e
u u

1∗′′
↑ →

1∗

u
e

u

←
↑ 1
1′′

e
u u

x̂
1x 1x

∗

e
u u

e
u u

←
↑ 1∗
1∗′′

e
u u

j
0 0

i

u
0

u

↓
0′ 0↓

←
↑ 0
0′′

x̂
1 1x

↓
x̂

1x 1x

∗

↑← `
j

i← ←
j

j
1∗ 1∗

i

u
e

u
i∗ ∗
x̂

0
`

0′

u
e

u

1
~0 ~0′

1

↓
0′ 0↓

x̂
1x 1x

∗
0

0 0′
1

0
0 0′

1

e
u u

i← ←
j

e
u u

0̂
1x 1x

0

∗
~1′ ~1∗

r
~1 1′

r

j
0 0

i

0̂
1x 1x

0

∗
0′ ~0↓

↓
0′ 0↓

0↑ ↑
0

e
u u

j
0 0

i

i↓ ←
←

j
1 1

i

1
1 1′

0
r

~0 0′
e

0′
0 ↑

j
0 0

i

↓
0′ 0↓

i← ←
j

0
`

0′

1
1 1′

0

1
x x

1

i
m ∗

1̂∗

i← ←
j

i
n m

x̂

j
0 0

i

↓
1′ 1↓

0↑ ↑
0

↓↑ ↑↓

i↓ ←
←

1
x x

1

1∗
↑ ↑

1∗

↓↑ ↑↓

u
u

x̂
1x 1x

∗

1
x x

1

0
0 0′

e

↓↑ ↑↓

0
0 0′

e

↓
1′ 1↓

0
x x

0

↓
0′ 0↓

e
u u

j
1 1

i

j
1 1

i

e
u u

0
0 0′

e

j
1∗ 1∗

i

j
0 0

i

↓
0′ 0↓

0′′
↑ →

0

j
0 0

i

←
↑ 0

0

↓
0′ 0↓

0
x e

0

i∗ ∗
0̂

1′′
↑ →

1

e
u u

e
u u

x̂
1x 1x

∗
1̂

1x 1x

1

↑← `
j

1∗
u

x̂
1 1x

↓

i← ←
j

0
0 0′

e

0
0 0′

1

u
e

u

e
u u

i← ←
j

e
u u

u
e

u

i← ←
j

j
0 0

i

0
x e

0

u
e

u

1
1 1′

0

∗
1′ ~1↓

0
x x

0

1
1 1′

0

e
u u

j
1 1

i

u
0

u

r
~0 0′

e

i→ ↓↓

i← ←
j

∗
~1′ ~1∗

1
1 1′

0

i← ←
j

↓↑ ↑↓

e
u u

∗
1′ ~1↓

0
0 0′

e

↑← `
j

↑∗ e
0̂

i← ←
j

∗
~0′ ~0∗

↓
1′ 1↓

j
1∗ 1∗

i

∗
0′ ~0↓

0
0 0′

e

i∗ ∗
x̂

x̂
1x 1x

∗
1̂∗

1x 1
r

i← ←
j

i← ←
j

0↑ ↑
0̂

↓↑ ↑↓

j
0 0

i

1∗
↑ ↑

1∗
↓↑ ↑↓

u
e

u

j
1∗ 1∗

i

↓
0′ 0↓

1̂
1x 1x

1
r

~0 0′
r

0̂
1x 1x

0

↓↑ ↑↓

e
u u

u
u

∗
0′ ~0↓

1̂∗
1x 1

r

e
u u

i← ←
j

i∗ ∗
x̂

0̂
1x 1x

0

i← ←
j

x̂
1 1x

↓

j
1∗ 1∗

i

0↑ n
0̂

1∗
↑ ↑

1∗

↓↑ ↑↓
1↑ ↑
1

1∗
↑ ↑

1∗

↓↑ ↑↓

1
~0 ~0′

1

0
x e

0

0
~0 ~0′

0

↓
0′ 0↓

e
u u

0
x e

0

∗
~0′ ~0∗

j
0 0

i

↓
1′ 1↓

1
x x

1

i← ←
j

j
1∗ 1∗

i
u

e
u

∗
~0′ ~0∗

0
x e

0

u
e

u

0
0 0′

e

1
1 1′

0

0′
0 ↑

0
0 0′

e

u
e

u

↓
1′ 1↓

0
~1 ~1′

0

u
1

u

1∗
x x

1∗

j
1 1

i

e
u u

0̂
1x 1x

0 ∗
~0′ ~0∗

0
0 0′

1

0
0 0′

e
e

u u

↓↑ ↑↓

1∗
1∗
↑

u
e

u

1′
1 ↑

0
x e

0

1̂
1x 1x

1

x̂
1x 1x

∗
x̂

1x 1x

∗

i∗ ∗
1̂

1̂∗
1∗ 1

0

0̂
1x 1x

0

j
0 0

i

r
~0 0′

r

i← ←
j

j
1 1

i

e
u u

0↑ ↑
0

i→ ↓↓

i← ←
j

1∗
↑ ↑

1̂∗

j
1∗ 1∗

i

Figure 25: Simulation of Step 3f. For improved visibility, we do not display the blank rows in between bit rows.

other practically motivated self-assembly models that can
permit replication? One potential example is the multiple
temperature model [KS06] in which tiles can be broken
off by increases to a systems temperature. Is it possible
to simulate some RNA enzyme results under the multiple
temperature model to perform shape replication?

In this paper we primarily focus on precise replica-
tion by using a non-constant number of stages to specify
how many copies are created. An alternate approach is
to maintain a constant number of stages but use a non-
constant number of tile types. In this paper we show that
both versions are achievable for the simple case of rect-
angles. More generally, work in progress has shown that

the more general genus 0 shapes can be replicated with
either logarithmic tile or stage complexity. Determining
if some type of smooth tradeoff between tile and stage
complexity is an interesting direction for both replication
and staged assembly in general.

Acknowledgments
This work was initiated at the 24th Bellairs Winter
Workshop on Computational Geometry, co-organized by
Erik Demaine and Godfried Toussaint on February 6–13,
2009, in Holetown, Barbardos. We thank the other partic-
ipants of the workshop—Greg Aloupis, Brad Ballinger,

Prosenjit Bose, Jean Cardinal, Sébastien Collette, Vida
Dujmović, Ferran Hurtado, John Iacono, Stefan Langer-
man, Godfried Toussaint, David Wood, and Stefanie
Wuhrer—for providing helpful comments and a stimulat-
ing environment.

References

[ACGH01] Leonard Adleman, Qi Cheng, Ashish Goel, and
Ming-Deh Huang. Running time and program size for
self-assembled squares. In STOC ’01: Proceedings of
the thirty-third annual ACM symposium on Theory of
computing, pages 740–748, New York, NY, USA, 2001.
ACM.

[Adl00] Leonard M. Adleman. Toward a mathematical theory
of self-assembly. Technical Report 00-722, Department
of Computer Science, University of Southern California,
January 2000.

[AGKS04] Gagan Aggarwal, Michael H. Goldwasser, Ming-
Yang Kao, and Robert T. Schweller. Complexities for
generalized models of self-assembly. In SODA ’04: Pro-
ceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 880–889, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Mathemat-
ics.

[CE03] Qi Cheng and Pablo Moisset Espanés. Resolving two
open problems in the self-assembly of squares. Technical
Report 03-793, University of Southern California, June
2003.

[DDF+08] Erik D. Demaine, Martin L. Demaine, Sándor P.
Fekete, Mashhood Ishaque, Eynat Rafalin, Robert T.
Schweller, and Diane L. Souvaine. Staged self-assembly:
Nanomanufacture of arbitrary shapes with o(1) glues.
Natural Computing, 7(3):347–370, September 2008.

[KS06] Ming-Yang Kao and Robert Schweller. Reducing tile
complexity for self-assembly through temperature pro-
gramming. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithm, pages 571–580, 2006.

[Rod94] Gene Roddenberry. Star trek: The next generation.
Television series, 1987–1994.

[RW00a] Paul W. K. Rothemund and Erik Winfree. The
program-size complexity of self-assembled squares. In
Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, pages 459–468, 2000.

[RW00b] Paul W. K. Rothemund and Erik Winfree. The
program-size complexity of self-assembled squares (ex-
tended abstract). In STOC ’00: Proceedings of the thirty-
second annual ACM symposium on Theory of computing,
pages 459–468, New York, NY, USA, 2000. ACM.

[SW05] Rebecca Schulman and Erik Winfree. Self-replication
and evolution of dna crystals. In Advances in Artificial
Life, 8th European Conference, pages 734–743, 2005.

[UE71] Tsuneko Uchida and Fujio Egami. Microbial ribonu-
cleases with special reference to rnases t1, t2, n1, and u2.
The Enzymes, 4:205–250, 1971.

[Win98] Erik Winfree. Algorithmic Self-Assembly of DNA.
PhD thesis, California Institute of Technology, Pasadena,
1998.

1. Mark a tile edge.

1a. Fill bounding box.

add
f

o o
o

f
o o

f

mix, filter
to maximal

larger than 1

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

f
o o

f

o
o o

o
f

o o
f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

f
o o

o

o
o o

o

o
o o

o
f

o o
f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

f
o o

f

f
o o

f

o
o o

o

o
o o

o

f
o o

f

f
o o

f

f
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

f
o o

f
o

o o
o

o
o o

o

f
o o

f

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

1b. Make L shapes and mix.

add u
u
u

o

u t1
f

t1
u
u

o

t2
t1 v

o

mix, filter
to maximal

larger than 3

f
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

f
o o

f

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

f
o o

f

o
o o

o

o
o o

o

o
o o

o

f
o o

f

f
o o

f

f
o o

f

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

f
o o

f

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u
o

o
o o

o

f
o o

o

o
o o

o

f
o o

f

u t1
f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u
u

f
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

1c. Walk right.

add t1 t1
f

t2
t1 v

o

t3
v

o

mix, filter
to maximal

larger than 1

o
o o

o

f
o o

f

t1 t1
f

o
o o

o

o
o o

o

o
o o

o

t2
t1 v

o

o
o o

o

f
o o

f

f
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u t1
f

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o

t1 t1
f

f
o o

f

f
o o

f

u
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

f
o o

f

o
o o

o

o
o o

o

o
o o

o
o

o o
o

f
o o

f

o
o o

o

o
o o

o

f
o o

f
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
f

o o
f

f
o o

o

u
u

f
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

t3
v

o
t1 t1

f

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

f
o o

o

1d. Enzyme.

filter
to DNA

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

t2
t1 v

o

t3
v

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

Figure 21: Simulation of Step 1.

2. Cover the boundary.

2a. Detect reflex corners.

add
b→

o
o

b↑ o
o

o
o

b←

o
o b↓

mix, filter
to maximal

larger than 1

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o b↓

o
o o

o

b↑ o
o

o
o o

o
o

o o
o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

t2
t1 v

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

t3
v

o

2b. Detect convex corners.

add C2 o
u

o
u b↓

c1

u
C1 u

c2

b→
o c1

u
u

u c2
C1

o
u

C2

u
o C2

c2
u C1

u

c1

b↑ u
o

u
c1 o
b←

C2
u

o

C1
c2 u

u
u

c1 o
b←

C1
c2 t1

u

mix, filter
to maximal

larger than 3

t2
t1 v

o

t3
v

o

o
o o

o

b→
o c1

u

o
o o

o

o
o o

o

u
u c2
C1

o
o o

o

o
o o

o

o
o o

o

b→
o c1

u

o
o o

o

o
o o

o

u
o C2

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u
u c2
C1

C1
c2 t1

u

o
o o

o

o
o o

o

o
o o

o

c1

b↑ u
o

o
o o

o

o
o o

o

o
o o

o

o
o b↓

o
o o

o

C2
u

o

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u
C1 u

c2

o
o o

o

o
o o

o
o

o o
o

b↑ o
o

o
u

C2

o
o o

o

u
c1 o
b←

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
o o

o

C1
c2 u

u

o
o o

o

o
o o

o
o

o o
o

o
o o

o

o
u b↓

c1

o
o o

o
o

o o
o

o
o o

o

C2 o
u

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

u
c1 o
b←

o
o o

o

o
o o

o

o
o o

o

o
u

C2
o

o o
o

o
o o

o

c2
u C1

u

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

2c. Fill in the sides.

add
e

b↑ b↑
o

b←
e o
b←

o
b↓ b↓

e

b→
o e
b→

e
b↑ b↑

o

b←
e o
b←

o
b↓ b↓

e

b→
o e
b→

mix, filter
to maximal

larger than 1

o
o o

o

e
b↑ b↑

o

o
o o

o
o

o o
o

o
o o

o

u
C1 u

c2

o
o o

o

b→
o e
b→

o
u

C2
o

o o
o

o
o o

o

e
b↑ b↑

o

o
o o

o

b↑ o
o

o
o o

o

o
b↓ b↓

e

o
o o

o

b←
e o
b←

o
o o

o

c2
u C1

u

o
o o

o

o
o o

o

o
o o

o

b←
e o
b←

o
o o

o

o
o o

o

o
o o

o

o
b↓ b↓

e

o
o o

o

o
b↓ b↓

e

o
o o

o

o
b↓ b↓

e

b→
o c1

u

o
o o

o

o
b↓ b↓

e

o
o o

o

o
o o

o

e
b↑ b↑

o

o
o o

o

o
b↓ b↓

e

o
o o

o

e
b↑ b↑

o

o
o o

o

o
o b↓

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

o
o o

o

c1

b↑ u
o

C1
c2 u

u

u
o C2

o
o o

o

o
o o

o
u

u c2
C1

u
c1 o
b←

t2
t1 v

o

C2
u

o

o
o o

o

o
u

C2

o
o o

o

o
o o

o

o
o o

o

o
o o

o
u

u c2
C1

o
o o

o

o
b↓ b↓

e

o
o o

o

t3
v

o

o
o o

o

o
o o

o

b→
o e
b→

u
c1 o
b←

o
o o

o

o
o o

o
o

o o
o

o
u b↓

c1

o
o o

o

b→
o e
b→

o
o o

o

o
b↓ b↓

e

o
o o

o

C1
c2 t1

u
o

o o
o

o
o o

o
o

o o
o

o
o o

o

b←
e o
b←

o
o o

o

o
o o

o

e
b↑ b↑

o

o
o o

o

o
o o

o

o
o o

o
o

o o
o

b←
e o
b←

C2 o
u

o
o o

o

b→
o c1

u
o

o o
o

o
o o

o

o
o o

o

e
b↑ b↑

o

o
o o

o

e
b↑ b↑

o

b→
o e
b→

o
o o

o

Figure 22: Simulation of Step 2.

