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David A. Huffman (1925–1999) is best known in com-
puter science for his work in information theory, particu-
larly Huffman codes, and best known in origami as a pio-
neer of curved-crease folding. But during his early paper
folding in the 1970s, he also designed and folded over a
hundred different straight-crease origami tessellations. Un-
like most origami tessellations designed in the past twenty
years, Huffman’s straight-crease tessellations are mostly
three-dimensional, rigidly foldable, and have no locking
mechanism. In collaboration with Huffman’s family, our
goal is to document all of his designs by reverse-engineering
his models into the corresponding crease patterns, or in some
cases, matching his models with his sketches of crease pat-
terns. Here we describe several of Huffman’s origami tessel-
lations that are most interesting historically, mathematically,
and artistically.

1 Introduction
David A. Huffman was a brilliant mathematician, com-

puter scientist, and artist. Sadly, he wrote only one paper de-
voted to mathematical paper folding, in 1976 [1]. His paper
describes fundamentals of both straight and curved creases,
in particular using a dual diagram to analyze both local be-
havior and interactions among creases. Beyond his paper,
Huffman designed and folded hundreds of models and sculp-
tures, and took copious notes on his ideas and designs, but
never published and only twice exhibited his work (at U. C.
Santa Cruz in 1977 and at Xerox PARC in 1998). More re-
cently, a 2012 exhibit [2] revealed several of his pieces to the
public for the first time.

In this paper, we focus on Huffman’s straight-crease de-
signs, particularly his work in the area now known as origami
tessellations. (Huffman’s pioneering curved-crease designs
are the study of other ongoing work [3].)

An origami tessellation is a folding design where both
the crease pattern and the folded state use repeated ele-
ments to form a two-dimensional pattern, typically accord-

The authors are listed in alphabetical order. A preliminary version
of this paper appears in the ASME 2013 International Design Engineer-
ing Technical Conferences & Computers and Information in Engineering
Conference (IDETC/CIE 2013).

ing to the symmetries of one of the 17 periodic “wallpaper
groups”. Origami historian David Lister [4, 5] attributes the
origin of origami tessellations to Shuzo Fujimoto, a Japanese
schoolteacher of mathematics who self-published the first
origami tessellation book Twist Origami in 1976. In 1966,
however, artist Ronald Resch patented several origami tes-
sellation designs [6]. Huffman met Resch in 1968, and they
talked more extensively at University of Utah in 1973, while
Huffman was on sabbatical and Resch was a professor there.
Both Huffman and Resch may have been influenced by these
discussions, though we have no clear documentation to this
effect. Huffman’s tessellation designs spanned the 1970s
while he was a professor at University of California, Santa
Cruz.

An explosion in artistic origami tessellations over the
past two decades includes Chris Palmer’s work in fabric, Joel
Cooper’s representational sculpture, and Eric Gjerde’s book
[7]. On the mathematics side, Lang and Bateman [8] recently
characterized a general family of flat-folded origami tessel-
lations, while another recent result [9] can be interpreted as
algorithmic design of a family of 3D origami tessellations.

Huffman’s tessellations are remarkably different in style
from most modern tessellations as well as Fujimoto’s histor-
ical tessellations. The latter tessellations typically fold flat
and are locked (not rigidly foldable): the finished piece is
two-dimensional and, from the folded form, it is impossi-
ble to flatten back out into its original square without bend-
ing along non-crease lines. Most of Huffman’s origami tes-
sellations, on the other hand, are three-dimensional and not
locked: they can be rigidly folded into their final form by
bending the material just at the crease lines.

Our ongoing work, in collaboration with the Huffman
family, aims to document, reverse engineer, and analyze
David Huffman’s origami tessellation designs, of which
there are over one hundred. In this paper, we detail the
reverse-engineering process for one representative example,
and detail (our reconstructions of) one family of closely re-
lated models.



Figure 1: David Huffman’s drawing of an origami tessella-
tion crease pattern (date unknown) in which the triangle is
nearly equilateral after being rounded to have corners on a
square grid. Used with permission of the Huffman family.

2 Reconstruction Process
Our starting point is Huffman’s physical models, sculp-

tures, and handwritten notes, which are being photographed,
scanned, and organized into an archive as part of the curved-
crease analysis [3]. In some cases, we have both Huffman’s
hand drawing of a crease pattern as well as his folded model,
but often we have only one or the other. Our reconstruction
process differs depending on whether we work mainly from
a (scanned) hand-drawn crease pattern or (a photograph of) a
folded model. In either case, our goal is to produce an accu-
rate vector drawing of the crease pattern, print it out (using a
Graphtec cutting plotter to score the crease lines), and fold it
to ensure that we correctly reconstructed the design.

When starting from a crease pattern, our process is fairly
simple. We estimate the exact positions of the crease lines
by determining the underlying grid system—most patterns
follow a regular square or triangular/hexagonal lattice—
and measuring lengths of creases as accurately as possible.
Sometimes the resulting folding is not accurate enough, so
we adjust the creases and repeat.

One interesting detail is that, while Huffman’s designs
often appeared to have triangular or hexagonal symmetry, he
drew his crease patterns on (square) graph paper, so he often
rounded the triangular grid onto the square grid. Figure 1
shows a simple example. Mathematically, this rounding re-
moves some of the symmetry in the design, but in practice
the difference is imperceptible. Our reconstructions treat this
rounding as an artifact of Huffman’s process and not part
of the mathematical design, and thus use an exact triangular
grid.

Reconstructing a design from a photograph is much
more complicated. Huffman often explored many variations
of a design, and we exploit this fact by modifying previous
reconstructions to determine many reconstructions, often by
guessing and trying small variations until producing the de-
sired one. For the first design in each family, however, we
needed a more precise strategy. First we broke each tessella-

Figure 2: Our photograph of David Huffman’s design “Three
Axis Woven Design” (date unknown), which was the basis of
our reconstruction.

tion into tileable units, which are repeated to form the over-
all model. From there, we reconstructed a crease pattern for
each unit using a mixture of techniques, and then tiled a page
with those units.

3 Reconstructing “Three Axis Woven Design”
For sake of example, we detail the reconstruction pro-

cess for one of Huffman’s most stunning origami tessella-
tions. Figure 2 shows our starting point, and Figure 6 shows
our finished reconstruction. This was one of our first re-
constructions from a photographed model. In fact, after fur-
ther searching through the Huffman archives, we discovered
Huffman’s crease pattern for the model, shown in Figure 5,
which turns out to be identical to our reconstruction, aside
from Huffman’s rounding of equilateral triangles to a square
grid. Nonetheless, it serves as an instructive example of our
reconstruction process.

Refer to Figures 3 and 4 for notation and step-by-step
partial reconstructions.

Step 1. The inset hexagon is formed by a hexagon of
creases: A1,A2,A3,A4,A5,A6.

Step 2. The little orthogonal valley fold is crease B1. From
looking at the interior wall of the hexagon, we see that said
interior wall is made out of right triangles (angles unknown)
so we know that segment B1 is perpendicular to segment A1.

Step 3. In the intersection of A1 and B1 is segment C1,
which runs behind the triangle that makes up the outer face
of the interior hexagon wall. We cannot actually see C1, but
because of the symmetry of the hexagon, we can infer that
it exists. The angle between B1 and A1 is 90 degrees. The
angle between B1 and C1 is also 90 degrees. Thus, the angle
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Figure 3: Points and lines of interest in Figure 2 for reconstructing Huffman’s “Three Axis Woven Design”.
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Figure 4: Step-by-step partial reconstructions of Huffman’s “Three Axis Woven Design”.

between A1 and C1 is 180 degrees, meaning that A1 and C1
must be the same line.

Step 4. We know that A2 and C1 end up collinear in the
folding. The only way for them to be collinear is for the
angle between them to be bisected. That angle is 60 degrees,
thus D1 must be 30 degrees away from both of them.

Step 5. D1 and B2 meet at point P2.

Step 6. E1 is a valley fold radiating from point P1. In the
folded form, it is parallel to A2. Because C1 lies along the
same line as A2 and there are no fold lines running between
E1 and C1, we know E1 and C1 are parallel.



Figure 5: David Huffman’s hand-drawn crease pattern for his
design “Three Axis Woven Design” shown in Figure 2. Used
with permission of the Huffman family.

Figure 6: Our reconstruction of David Huffman’s “Three
Axis Woven Design”.

Step 7. F1 is a valley fold which also comes from P1, and
is 60 degrees away from E1.

Step 8. The section of C2 between Q2 and Q3 is the same
length as A2. Points Q3, Q4, and R1 define an equilateral
triangle, so the section of C2 between Q3 and R1 is also the
same length as A2. Thus, the total length of C2 is twice the
length of A2.

Step 9. At this point, it looks like we can put together two
tiles. However, there is still a problem: C2 appears to ter-
minate at R1. However, C′4, which must meet C2, seems to
terminate at T1. Thus, we know that C2 cannot end at R1. In-
stead, A2 meets C′4, and R1 is left as part of the smaller mini
triangles. On closer inspection, A′2 wraps around and termi-
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Figure 7: The components of a repeating unit.

nates at T1, while C′4 continues on the same path and finishes
at S1. If A2 were to meet R1, then there would be no miniature
triangles, and we would have an inaccurate reconstruction.

Step 10. When we extend the lines we have so far, F2 and
E ′5 intersect at point U1.

Step 11. G1 runs from point U1 to the intersection of C1
and C′5.

Step 12. H2 runs from point U1, and intersects C′5 two A
lengths away from its start. We know it is two A lengths
away because the parallelogram defined by P1, T1, U ′4, and
P′5 has sides of length 2A. Each side is defined by A3 and C′2.
C′2 is equal to A4, so each side is the sum of those segments,
and thus is of length 2A. This locks all proportions into place,
and our reconstruction is complete.

4 Families
Many of Huffman’s origami tessellation designs are

closely related to each other. We call two designs directly re-
lated if there is a relatively simple transformation that turns
one design into the other, and call two designs related or
belonging to the same family if there is a sequence of such
transformations.

In many origami tessellation designs, the repeating unit
of the crease pattern can be characterized as in Figure 7 to
have bounding polygon of valley folds, and an interior tree
(or nearly tree) structure of mountains. To compare (or trans-
form) two tessellations, we focus on just this repeating unit,
and ignore other auxiliary creases.

In these settings, the transformations we allow are sym-
metric shifts of the angles of the tree; point enlarging; and
shears, stretches, compressions, and twists of the crease pat-
tern, so long as they preserve symmetry. The stretches and
compressions dilate or contract either all or parts of the tree,
subject to preserving tree symmetry. A twist is comprised
of fixing the center of the tree and then stretching and rotat-
ing the rest of the tree and boundary around that point. We
can also enlarge points into polygons, as long as there are
at least three incident lines, two or more of which must be
leaves of the tree; the expanded polygon must have a number



of vertices between 2 and the number of creases incident to
the point.

In a transformation, we allow changing the bounding
polygon, to enable different clipping the tree to different
shapes for tiling. We also allow modifying other auxiliary
creases. We forbid changing the mountain-valley assignment
of individual creases. (We can allow flipping all creases,
though.)

5 The Vanes Family
Figure 10 illustrates one family of Huffman designs we

have identified, their crease patterns, and their direct rela-
tions. We call the family “Vanes” after Huffman’s own name
for one of the designs: “Raised Vanes, Both Vertical and Hor-
izontal”. Figures 6 and 11–19 give photographs of our folded
reconstructions of these designs.

Next we describe some of the direct relations between
members of the Vanes family.

Redrawing the bounding polygon. “Stars-Triangles” and
“Raised Vanes, Both Vertical and Horizontal” share a tree.
To transform from one to the other, we simply redraw the
bounding polygon.

Tree angle shifts. To go from “Raised Vanes, Both Verti-
cal and Horizontal” to “Crippled Vanes”, we merely enlarge
the angle of the two leaves of the end of the tree in “Raised
Vanes”.

Shears. “Three Axis Woven Design” is a sheared version
of “Rectangular Woven Design”, sheared from a square grid
to an equilateral triangle grid.

Stretches and compressions. “Rectangular Woven De-
sign” is a stretched version of “Exdented Boxes”, stretching
the square center into a rectangle.

Twists. To make “Pinwheels”, we fix the center of the
square in “Exdented Boxes” and rotate the leaves 22.5◦

around the center, and then redraw the bounding polygon.

22.5o 

22.5o 

22.5o 
22.5o 

Fixed Point

Figure 8: The twist to make “Pinwheels”.

Point to polygon. To make “Rectangular Woven Design”
from “Extruded Boxes”, we enlarge both nodes into poly-
gons, forming the rectangle of “Rectangular Woven Design”.

Figure 9: Enlarging the nodes of “Extruded Boxes”.

6 Conclusion
The family of reconstructions presented here just scratch

the surface of Huffman’s origami tessellations, of which
there are over a hundred. In ongoing work, we are re-
constructing, analyzing, and categorizing all of his designs.
We expect there to be roughly twenty different families,
most of which should be loosely linked. By reconstruct-
ing his tessellations, we aim to open the world of three-
dimensional tessellations. Most work today is centered on
tightly locked, two-dimensional tessellations, and we look
forward to encouraging further exploration of Huffman’s
three-dimensional, rigidly foldable tessellation style.
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Figure 11: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Water-
bombs”.

Figure 12: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Ex-
dented Boxes”.

Figure 13: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Ex-
truded Boxes”.

Figure 14: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Pin-
wheels”.



Figure 15: Our reconstruction of David Huffman’s “Raised
Vanes, Both Vertical and Horizontal” (date unknown).

Figure 16: Our reconstruction of David Huffman’s “Rectan-
gular Woven Design” (date unknown)

Figure 17: Our reconstruction of David Huffman’s “Squares
With Legs” (date unknown).

Figure 18: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Stars-
Triangles”.

Figure 19: Our reconstruction of David Huffman’s origami
tessellation (title and date unknown), which we call “Tessel-
lation of Doom”.
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