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Abstract. In this paper we consider deflations (inverse pocket flips) of
n-gons for small n. We show that every pentagon can be deflated after
finitely many deflations, and that any infinite deflation sequence of a
pentagon results from deflating an induced quadrilateral on four of the
vertices. We describe a family of hexagons that deflate infinitely for a spe-
cific deflation sequence, yet induce no infinitely deflating quadrilateral.
We also review the known understanding of quadrilateral deflation.

1 Introduction

A deflation of a simple planar polygon is the operation of reflecting a subchain
of the polygon through the line connecting its endpoints such that (1) the line
intersects the polygon only at those two polygon vertices, (2) the resulting poly-
gon is simple (does not self-intersect), and (3) the reflected subchain lies inside
the hull of the resulting polygon. A polygon is deflated if it does not admit any
deflations, i.e., every pair of polygon vertices either defines a line intersecting
the polygon elsewhere or results in a nonsimple polygon after reflection.

Deflation is the inverse operation of pocket flipping. Given a nonconvex sim-
ple planar polygon, a pocket is a maximal connected region exterior to the poly-
gon and interior to its convex hull. Such a pocket is bounded by one edge of
the convex hull of the polygon, called the pocket lid, and a subchain of the poly-
gon, called the pocket subchain. A pocket flip (or simply flip) is the operation
of reflecting the pocket subchain through the line extending the pocket lid. The
result is a new, simple polygon of larger area with the same edge lengths as the
original polygon. A convex polygon has no pocket and hence admits no flip.

In 1935, Erdős conjectured that every nonconvex polygon convexifies after a
finite number of flips [5]. Four years later, Nagy [2] claimed a proof of Erdős’s
conjecture. Recently, Demaine et al. [3, 4] uncovered a flaw in Nagy’s argument,
as well as other claimed proofs, but fortunately correct proofs remain.
? Partially supported by NSF CAREER award CCF-0347776, DOE grant DE-FG02-

04ER25647, and AFOSR grant FA9550-07-1-0538.
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In the same spirit of finite flips, Wegner conjectured in 1993 that any polygon
becomes deflated after a finite number of deflations [8]. Eight years later, Fevens
et al. [6] disproved Wegner’s conjecture by demonstrating a family of quadrilat-
erals that admit an infinite number of deflations. They left an open problem of
characterizing which polygons deflate infinitely. Ballinger [1] closed the problem
for quadrilaterals by proving that all infinitely deflating simple quadrilaterals
are in the family defined by Fevens et al. [6].

This paper attempts to advance the understanding of deflating n-gons be-
yond n = 4. We prove that every pentagon admitting an infinite number of
deflations induces an infinitely deflating quadrilateral on four of its vertices.
Then we show our main result: unlike quadrilaterals, every pentagon can be de-
flated after finitely many (well-chosen) deflations. Finally, we construct a family
of infinitely deflatable hexagons that induce no infinitely deflating quadrilateral;
however, they deflate infinitely only according to a specific deflation sequence.

2 Definitions and Notation

Let P = 〈v0, v1, . . . , vn−1〉 be a polygon together with a clockwise ordering of
its vertices. Let P k = 〈vk

0 , vk
1 , . . . , vk

n−1〉 denote the polygon after k arbitrary
deflations, and P ∗ denote the limit of P k, when it exists, having vertices v∗i .
Thus, the initial polygon P = P 0. The turn angle of a vertex vi is the signed
angle θ ∈ (−180◦, 180◦] between the two vectors vi − vi−1 and vi − vi+1. A
vertex of a polygon is straight if the angle between its incident edges is 180◦,
i.e., forming a turn angle of 0◦. A flat polygon is a polygon with all its vertices
collinear. A hairpin vertex vi is a vertex whose incident edges overlap each
other, i.e., forming a turn angle of 180◦.6 A polygon vertex is sharpened when
its absolute turn angle decreases.

3 Deflation in General

In this section, we prove general properties about deflation of arbitrary simple
polygons. Our first few lemmata are fairly straightforward, while the last lemma
is quite intricate and central to our later arguments.

Lemma 1. Deflation only sharpens angles.

This result follows from an analogous result for pocket flips, which only flatten
angles (see, e.g., [7]). For completeness, we provide a proof.

Proof. Consider the chain vi, vi+1, . . . , vj that is to be deflated across line `
passing through vi and vj . The two vertices vi+1 and vi−1 are on different sides
of `. After deflating the chain vi, vi+1, . . . , vj , vi+1 is reflected across ` and its
reflection is v′i+1. Consider the two triangles vi−1vivi+1 and vi−1viv

′
i+1. The

6 This terminology was introduced in [4] where it plays a role in pocket flips.



sides vivi+1 and viv
′
i+1 have the same length (deflation preserves edge lengths).

Because vi+1 and v′i+1 have the same distance from `, and v′i+1 is on the same
side of ` as vi−1, then the length of vi−1v

′
i+1 is less than the length of vi−1vi+1.

This implies that the angle opposite edge vi−1v
′
i+1 is smaller than the angle

opposite edge vi−1vi+1 (by Euclid’s Propositions I.24 and I.25). Thus, the angle
at vertex vi sharpens. 2

Corollary 1. Any n-gon with no straight vertices will continue to have no
straight vertices after deflation, even in an accumulation point P ∗.

Lemma 2. In any infinite deflation sequence P 0, P 1, P 2, . . ., the absolute turn
angle |τi| at any vertex vi has a (unique) limit |τ∗i |.

Proof. By Lemma 1, |τi| never increases. Also, |τi| is bounded in the range
[0, 360◦). Hence, |τi| has a limit |τ∗i |. 2

Corollary 2. In any infinite deflation sequence P 0, P 1, P 2, . . ., v∗i is a hairpin
vertex in some accumulation point P ∗ if and only if v∗i is a hairpin vertex in all
accumulation points P ∗.

Lemma 3. Any n-gon with n odd and having no straight vertices cannot flatten
in an accumulation point of an infinite deflation sequence.

Proof. Suppose for contradiction that there is a flat accumulation point. By
Lemma 1, this limit has no straight vertices, so all vertices must be hairpins.
Hence, the edges of the polygon alternate left and right. Because the edges form
a closed cycle, when the first edge goes left, the last edge has to come back right
in order to close the cycle. Hence, the number of edges of a flat polygon must be
even. Therefore, any polygon with an odd number of vertices cannot flatten. 2

Lemma 4. For any infinite deflation sequence P 0, P 1, P 2, . . ., there is a sub-
chain vi, vi+1, . . . , vj (where j− i ≥ 2) that is the pocket chain of infinitely many
deflations.

Proof. Label each time t with (i, j) if the t-th deflation has pocket chain vi, vi+1,
. . . , vj (with j − i ≥ 2). There are only finitely many labels, but infinitely many
deflations, so some label must appear infinitely often. This label (i, j) corre-
sponds to the desired subchain vi, vi+1, . . . , vj . 2

We conclude this section with a challenging lemma showing that infinitely
deflating pockets flatten:

Lemma 5. Assume P = P 0 has no straight vertices. If P ∗ is an accumulation
point of the infinite deflation sequence P 0, P 1, P 2, . . ., and subchain vi, vi+1, . . . ,
vj (where j − i ≥ 2) is the pocket chain of infinitely many deflations, then
v∗i , v∗i+1, . . . , v

∗
j are collinear and v∗i+1, . . . , v

∗
j−1 are hairpin vertices. Further-

more, if v∗i+1, . . . , v
∗
j−1 extends beyond v∗j , then v∗j is a hairpin vertex; and if

v∗i+1, . . . , v
∗
j−1 extends beyond v∗i , then v∗i is a hairpin vertex. In particular, if

j − i = 2, then either v∗i or v∗j is a hairpin vertex.



Proof. Because P 0 ⊇ P 1 ⊇ P 2 ⊇ · · ·, we have hull(P 0) ⊇ hull(P 1) ⊇ hull(P 2) ⊇
· · ·, and in particular area(hull(P 0)) ≥ area(hull(P 1)) ≥ area(hull(P 2)) ≥ · · · ≥ 0.
Thus,

∑∞
t=1[area(hull(P t))−area(hull(P t−1))] ≤ area(hull(P 0)), so area(hull(P t))

− area(hull(P t−1)) → 0 as t →∞. Hence, for any ε > 0, there is a time Tε such
that, for all t ≥ Tε, area(hull(P t))− area(hull(P t−1)) ≤ ε. As a consequence, for
all t ≥ Tε, hull(P t−1) ⊆ hull(P t) ⊕ Dε/` where ⊕ denotes Minkowski sum, Dx

denotes a disk of radius x, and ` is the length of the longest edge in P , which is
a lower bound on the perimeter of hull(P t).

Let t1, t2, . . . denote the infinite subsequence of deflations that use vi, vi+1, . . . ,
vj as the pocket subchain, where P tr is the polygon immediately after the rth de-
flation of the pocket chain vi, vi+1, . . . , vj . Consider any vertex vk with i < k < j.
If tr ≥ Tε, then vtr−1

k ∈ hull(P tr ) ⊕ Dε/`. Also, vtr−1
k is in the halfplane Hr

exterior to the line of support of P tr through vtr
i and vtr

j . Now, the region
(hull(P tr ) ⊕ Dε/`) ∩ Hr converges to a subset of the line `tr

i,j through vtr
i and

vtr
j as ε → 0 while keeping tr ≥ Tε. Thus, for any accumulation point P ∗, v∗k is

collinear with v∗i and v∗j , for all i < k < j. In other words, v∗i+1, . . . , v
∗
j−1 lie on

the line `∗i,j through v∗i and v∗j . By Corollary 1, v∗i+1, . . . , v
∗
j−1 are not straight,

so they must be hairpins.
By Lemma 2, the absolute turn angle |τj | of vertex vj has a limit |τ∗j |. If

|τ∗j | > 0 (i.e., v∗j is not a hairpin in all limit points P ∗), then by Lemma 1,
|τ t

j | ≥ |τ∗j | > 0. For sufficiently large t, vt
j−1 approaches the line `t

i,j . To form
the absolute turn angle |τ t

j | ≥ |τ∗j | > 0 at vj , vt
j+1 must eventually be bounded

away from the line `t
i,j : after some time T , the minimum of the two angles

between vt
jv

t
j+1 and `t

i,j must be bounded below by some α > 0. Now suppose
that some vtr−1

k were to extend beyond vtr−1
j in the projection onto the line

`tr−1
i,j for some tr − 1 > T . As illustrated in Figure 1, for the deflation of the

chain vtr−1
i , vtr−1

i+1 , . . . , vtr−1
j to not cause the next polygon P tr to self-intersect,

the minimum of the two angles between vtr−1
j vtr−1

k and `tr−1
i,j must also be at

least α.
But this is impossible for sufficiently large t, because vt

k accumulates on the
line `t

i,j . Hence, in fact, vt
k must not extend beyond vt

j in the `t
i,j projection for

sufficiently large t. In other words, when v∗j is not a hairpin, each v∗k must not
extend beyond v∗j on the line `∗i,j . A symmetric argument handles the case when
v∗i is not a hairpin.

Finally, suppose that j− i = 2. In this case, because v∗i+1 = v∗j−1 is a hairpin,
it must extend beyond one of its neighbors, v∗i or v∗j . By the argument above, in
the first case, v∗i must be a hairpin, and in the second case, v∗j must be a hairpin.
Thus, as desired, either v∗i or v∗j must be a hairpin. 2

4 Deflating Quadrilaterals

We briefly review facts about quadrilateral deflation proved by Fevens et al. [6]
and Ballinger [1]. For completeness, we also show how to prove these results
using, in particular, our new Lemma 5.



α `t
i,j

vt
j

vt
i

< α

vt
k

vt
j+1

vt+1
k

(a) The angle between vt
kvt

j and `t
i,j is

less than α, hence in the next deflation
step the chain vt

i . . . vt
j will intersect the

polygon.

vt
k

`t
i,j

vt+1
k

vt
j+1

vt
jvt

i
> α

α

(b) The angle between vt
kvt

j and `t
i,j is

greater than α, so the polygon will not
self-intersect in the next deflation step.

Fig. 1. Because vt
j is not a hairpin, the minimum angle α between vt

jv
t
j+1 and `t

i,j is
strictly positive. If any vertex vt

k of the chain vt
i , v

t
i+1, . . . , v

t
j extends beyond vt

j , then
the minimum angle between vt

kvt
j and `t

i,j must be at least α for the next deflation step
P t+1 to not self-intersect. The dotted curve represents the rest of the polygon chain
and the shaded area is the polygon interior below line `t

i,j .

Lemma 6. [1] Any accumulation point of an infinite deflation sequence of a
quadrilateral is flat and has no straight vertices.

Proof. First we argue that all quadrilaterals P 1, P 2, . . . (excluding the initial
quadrilateral P 0) have no straight vertices. Because deflations are the inverse of
pocket flips, and pocket flips do not exist for convex polygons, deflation always
results in a nonconvex polygon. Thus all quadrilaterals P t with t > 0 must be
nonconvex. Hence no P t with t > 0 can have a straight vertex, because then it
would lie along an edge of the triangle of the other three vertices, making the
quadrilateral convex. By Corollary 1, there are also no straight vertices in any
accumulation point P ∗.

By Lemma 4, there is a subchain vi, vi+1, . . . , vj , where j − i ≥ 2, that
is the pocket chain of infinitely many deflations. In fact, j − i must equal 2,
because reflecting a longer (4-vertex) pocket chain would not change the polygon.
Applying Lemma 5 to P 1, P 2, . . . (where there are no straight vertices), for any
accumulation point P ∗, v∗i+1 is a hairpin and either v∗i or v∗j = v∗i+2 is a hairpin.
Hairpin v∗i+1 implies that v∗i , v∗i+1, v∗i+2 are collinear, while hairpin v∗i or v∗i+2

implies that the remaining vertex v∗i+3 = v∗i−1 lie on that same line. Therefore,
any accumulation point P ∗ is flat. 2

Theorem 1. [6, 1] A simple quadrilateral with side lengths `1, `2, `3, `4 is in-
finitely deflatable if and only if

1. opposite edges sum equally, i.e., `1 + `3 = `2 + `4; and
2. adjacent edges differ, i.e., `1 6= `2, `2 6= `3, `3 6= `4, `4 6= `1.

Furthermore, every such infinitely deflatable quadrilateral deflates infinitely in-
dependent of the choice of deflation sequence.

Proof. Fevens et al. [6] proved that every quadrilateral satisfying the two con-
ditions on its edge lengths is infinitely deflatable, no matter which deflation
sequence we make. Thus the two conditions are sufficient for infinite deflation.



To see that the first condition is necessary, we use Lemma 6. Because defla-
tion preserves edge lengths, so do accumulation points of an infinite deflation
sequence, so the flat limit configuration from Lemma 6 is a flat configuration of
the edge lengths `1, `2, `3, `4. By a suitable rotation, we may arrange that the
flat configuration lies along the x axis. By Lemma 6, no vertex is straight, so ev-
ery vertex must be a hairpin. Thus, during a traversal of the polygon boundary,
the edges alternate between going left `i and going right `i. At the end of the
traversal, we must end up where we started. Therefore, ±(`1− `2 + `3− `4) = 0,
i.e., `1 + `3 = `2 + `4.

To see that the second condition is necessary, suppose for contradiction that
`1 = `2 (the other contrary cases are symmetric). By the first condition, `1+`3 =
`2 + `4, so `3 = `4. Thus, the polygon is a kite, having two pairs of adjacent
equal sides. (Also, all four sides might be equal.) Every kite has a chord that
is a line of reflectional symmetry. No kite can deflate along this line, because
such a deflation would cause edges to overlap with their reflections. If a kite is
convex, it may deflate along its other chord, but then it becomes nonconvex, so
it can be deflated only along its line of reflectional symmetry. Therefore, a kite
can be deflated at most once, so any infinitely deflatable quadrilateral must have
`1 6= `2 and symmetrically `1 6= `2, `2 6= `3, `3 6= `4, and `4 6= `1. 2

5 Deflating Pentagons

First we observe that the pentagon problem is relatively simple if we allow a
straight vertex: we can subdivide the long edge of an infinitely deflating quadri-
lateral.

Theorem 2. There is a simple pentagon with a straight vertex that deflates
infinitely for all deflation sequences, exactly like the quadrilateral on the nonflat
vertices.

Proof. See Figure 2. We start with an infinitely deflating quadrilateral 〈v0, v1, v2,
v3〉 according to Theorem 1, and add a straight vertex v4 along the edge v3v0.
As long as we never deflate along a line passing through the straight vertex v4,
the deflations act exactly like the quadrilateral, and thus continue infinitely no
matter which deflation sequence we choose. To achieve this property, we set
the length of segment v3v0 to 1, with v4 at the midpoint; we set the lengths of
edges v0v1 and v2v3 to 2/3; and we set the length of edge v1v2 to 1/3. Then we
deflate the quadrilateral until the vertices are so close to being hairpins that v4

cannot see the nonadjacent convex vertex and the line through v4 and the reflex
vertex intersects the pentagon at another point. Thus no line of deflation passes
through v4, so we maintain infinite deflation as in the induced quadrilateral. 2

Finally we show that any infinitely deflating pentagon induces an infinitely
deflating quadrilateral.

Theorem 3. Every simple pentagon with no straight vertices can be deflated by
a finite sequence of (well-chosen) deflations. Furthermore, any infinite deflation
sequence in such a pentagon induces an infinitely deflating quadrilateral.
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Fig. 2. An infinitely deflatable pentagon that induces an infinitely deflatable quadri-
lateral (left) and its configuration after the first deflation (right).

Proof. Let P be a pentagon with no straight vertices, and assume for the sake of
contradiction that P deflates infinitely. Consider any accumulation point P ∗ of
an infinite deflation sequence P 0, P 1, P 2, . . .. By Lemma 4, there is an infinitely
deflating pocket chain, say v0, v1, . . . , vj , where j ≥ 2. By Lemma 5, v∗1 , . . . , v∗j−1

are hairpin vertices. Because the pentagon has only five vertices, j ≤ 4. In fact,
j ≤ 3: if j = 4, this pocket chain would encompass all five vertices, making P ∗

collinear, which contradicts Lemma 3. If j = 3, then v∗1 and v∗2 are hairpins. If
j = 2, then by Lemma 5, either v∗0 or v∗2 must be a hairpin; assume by symmetry
that it is v∗2 . Thus, in this case, again v∗1 and v∗2 are hairpins. Hence, in all cases,
v∗1 and v∗2 are hairpins, so v∗0 , v∗1 , v∗2 , v∗3 are collinear, while by Lemma 3 the fifth
vertex v∗4 must be off this line. In particular, v∗0 , v∗3 , and v∗4 are not hairpins.

v1

v3v0
v2

v4

Fig. 3. A pentagon with an in-
duced infinitely deflating quadri-
lateral, which is infinitely deflat-
able if we deflate only the sub-
chain v0, v1, v2, v3.

By Lemma 5, any infinitely deflating
chain is flat in the accumulation point P ∗,
so the only possible infinitely deflating chains
are v0, v1, v2; v1, v2, v3; and v0, v1, v2, v3 (Fig-
ure 3). Let T denote the time after which
only these three chains deflate. Thus, after
time T , v0, v3, and v4 stop moving, so in par-
ticular, v4’s angle and the length of the edge
v0v3 take on their final values. Therefore, af-
ter time T , the vertices v0, v1, v2, v3 induce a
quadrilateral that deflates infinitely, except
that the chain v0, v1, v2, v3 might deflate.
However, if at some time t > T the chain
vt
0, v

t
1, v

t
2, v

t
3 deflates along the line through

vt
0 and vt

3 into the triangle vt
0v

t
3v

t
4, then the

convex hull of P t+1 is vt+1
0 vt+1

3 vt+1
4 , which is fixed, so no further deflations are

possible, resulting in a finite deflation sequence. Therefore the infinite deflation
sequence can deflate only the chains v0, v1, v2 and v1, v2, v3 after time T . Indeed,
after time T the sequence must alternate between deflating these two chains,
because no chain can deflate twice in a row.

We claim that v∗1 and v∗2 lie along the segment v∗0v∗3 . Because v∗1 and v∗2
are hairpins, the only other possibilities are that v∗1 extends beyond v∗3 or that
v∗2 extends beyond v∗0 . If v∗1 extended beyond v∗3 , then applying Lemma 5 to
v1, v2, v3 would imply that v∗3 is a hairpin, which is a contradiction. Therefore,
v∗1 must lie along the segment v∗0v∗3 , and similarly v∗2 must lie along the segment
v∗0v∗3 . By Theorem 1, no two adjacent edges of the quadrilateral have the same



length, so in fact v∗1 and v∗2 must be strictly interior to the segment v∗0v∗3 . Hence,
for sufficiently large t > T , vt

0, v
t
1, v

t
2, v

t
3 are arbitrarily close to collinear with vt

1

and vt
2 projecting to the relative interior of segment vt

0v
t
3. Also, vt

1 and vt
2 must

be outside the triangle vt
0v

t
3v

t
4 because the quadrilateral v0, v1, v2, v3 remains

deflatable. As a consequence, for sufficiently large t > T , we can deflate the
chain vt

0, v
t
1, v

t
2, v

t
3, which prevents all further deflations as argued above. Thus

we obtain an alternate, finite deflation sequence. ut

6 Larger Polygons and Well-Chosen Deflations

It is easy to construct n-gons with n ≥ 6 that deflate infinitely, no matter which
deflation sequence we choose. See Figure 4(a) for the idea of the construction. We
can add any number of spikes to an infinitely deflating quadrilateral to obtain
n-gons with n ≥ 6 and even. For n ≥ 7 and odd, we can shave off the tip of
one of the spikes. Thus, n = 5 is the only value for which every n-gon with no
straight vertices can be finitely deflated.

(a) An infinitely deflating octagon con-
structed by adding long spikes to an in-
finitely deflating quadrilateral.

(b) An infinitely deflating 18-gon
constructed from four infinitely de-
flating quadrilaterals.

Fig. 4. Infinitely deflating polygons by combining infinitely deflating quadrilaterals.

None of the infinitely deflating polygons of Figure 4 are particularly satisfying
because their accumulation points are not flat. Are there any n-gons, n > 4, that
have no straight vertices and always deflate infinitely to flat accumulation points?

If we require that the n-gon is infinitely deflatable to a flat accumulation point
only for at least one deflation sequence, then we can construct such a hexagon
by taking two infinitely deflating quadrilaterals v0, v1, v2, v3 and v3, v4, v5, v0

(with their longest edge having the same length) and joining them along their
longest edge; removing this edge will leave us with hexagon v0, v1, v2, v3, v4, v5.
See Figure 5. This hexagon will deflate infinitely if we deflate only the two
subchains v0, v1, v2, v3 and v3, v4, v5, v0 independently, and never deflate across
the line through v0 and v3. This hexagon has an infinitely deflating quadrilateral
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Fig. 5. An infinitely deflating
hexagon constructed by joining
two infinitely deflating quadri-
laterals along their longest edge.
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Fig. 6. A hexagon that deflates infinitely for a
well-chosen deflation sequence but induces no in-
finitely deflating quadrilateral.

as a subpolygon, and indeed its infinite deflation sequences are interleavings of
the two such quadrilaterals.

Next we present a family of hexagons that deflate infinitely to a flat accumu-
lation point for some deflation sequence but do not induce an infinitely deflating
quadrilateral. Figure 6 shows an example.

Theorem 4. A simple hexagon H = 〈v0, v1, v2, v3, v4, v5〉 with side lengths `i =
|vi−1vi| (where v6 = v0) has an infinite deflation sequence with flat accumulation
points if it satisfies the following five properties:

1. opposite edges sum equally, i.e., `1 + `3 + `5 = `2 + `4 + `6;
2. adjacent edges differ, i.e., `1 6= `2, `2 6= `3, `3 6= `4, `4 6= `5, `5 6= `6, `6 6= `1;
3. 1

2`1 < `2 < `1;
4. `6 > 3`1; and
5. the hexagon is symmetric about the perpendicular bisector of the edge v0v5.

(In particular, `1 = `5 and `2 = `4, and v0v5 is parallel to v2v3.)

Proof. Consider a hexagon H satisfying the five properties. Assume by suitable
rotation and reflection that v0v5 (and hence v2v3) is horizontal, v0 is left of v5,
and v2 (and hence v3) is above the horizontal line through v0 and v5.



We argue that any such hexagon H is simple. Obviously, the parallel edges
v2v3 and v0v5 do not cross. If v0v1 (and hence v4v5) intersects v2v3, as in Fig-
ure 7(a), then by the planar quadrilateral uncrossing lemma, `1 +`3 > `2 + |v0v3|

(b)(a)

v2

v0 v5

v3

v5

v4
v4v1

v2 v3

v1

v0

Fig. 7. The two possible configurations of H if it self-intersects.

and `5 + |v0v3| > `4 +`6, which sum to `1 +`3 +`5 + |v0v3| > `2 +`4 +`6 + |v0v3|,
contradicting Property 1. Similarly, if v1v2 (and hence v3v4) intersects v0v5, as
in Figure 7(b) or its reflection, then `2 +`6 > `1 + |v2v5| and `4 + |v2v5| > `3 +`5,
which sum to `2+`4+`6+ |v2v5| > `1+`3+`5+ |v2v5|, contradicting Property 1.
In projection onto the horizontal line through v0v5, v1 can reach at most `1 to the
right of v0 and v4 can reach at most `5 = `1 to the left of v5. By Property 4, this
travel is small enough that v1 must be left of v4. Thus, in particular, v0v1 cannot
cross v4v5. If v2 were right of v3, then |v0v2|+ |v3v5| > `3 + `6, so by the triangle
inequality, `1 +`2 +`4 +`5 > `3 +`6, so by Property 4, `1 +`2 +`4 +`5 > `3 +3`1,
i.e., `2 +`4 > `3 +`1, so by Property 1, `6 < `5, contradicting Property 4. Hence,
v2 is left of v3. Thus v0, v1, and v2 are left of v3, v4, and v5, so v0v1 and v1v2

cannot cross v3v4 or v4v5. Hence no pairs of edges can cross. Property 2, together
with Properties 1 and 5, forbids edges from overlapping and forbids nonadjacent
edges from touching. Therefore H must be simple.

Next we claim that v1 (and hence v4), like v2 and v3, is above the horizontal
line through v0v5, implying that v0 (and hence v5) is convex. Because `1 = `5
and `2 = `4, Property 1 can be rewritten as 2`1 + `3 = 2`2 + `6. By Property 3,
`2 < `1, so `3 < `6. Thus v2 is above and to the right of v0. Because `2 < `1,
if v1 were not also above v0, the edge v1v2 could not reach a point above and
to the right of v0 without crossing v0v5. But we showed that H is simple, so v1

must in fact be above v0.
Now we claim that the hexagon H deflates infinitely by repeating the follow-

ing three-step sequence ad infinitum: first deflate across the line passing through
v0 and v2, second across the line through v3 and v5, and third across the line
through v2 and v3. Exactly where we begin this infinite sequence depends on
the initial hexagon H: if v2 (and hence v3) is reflex, we start on the first step;
otherwise, we start on the third step. In general, the first step will be executed
when v2 (and v3) is reflex, the second step will be executed when just v3 is reflex,
and the third step will be executed when v2 and v3 are convex. We also maintain
the invariant that the hexagon is symmetric about the perpendicular bisector of
v0v5 (Property 5) after every execution of the second and third steps. We need



to show that (1) no deflation step introduces crossings, and (2) every line of
deflation intersects the hexagon only at the two vertices defining it.

We have already shown that the hexagon is simple after any execution of
the second or third step, because then the hexagon satisfies Property 5. We
can argue simplicity after the execution of the first step by comparing with the
hexagon that was just before the first step and with the hexagon that will be
just after the next second step. Therefore the hexagon is simple at all stages.

It remains to show that every line of deflation hits the hexagon boundary just
at its two defining vertices. The argument for the first step, deflating across v0v2,
is below. The argument for the second step is similar to simplicity: Properties 3
and 4 guarantee that v1 is always left of v3, and in this case v1 is below the
horizontal line through v3, while v0 is below and right of v3, so the line through
v3 and v5 cannot hit v0v1 or v1v2. The argument for the third step is easy: the
line through v1 and v4 cannot hit any of the incident edges (v0v1, v1v2, v3v4,
and v4v5), and by Property 5 the line is horizontal, so it cannot hit the two
remaining horizontal edges (v2v3 and v0v5).

Finally we consider deflating across v0v2, where it suffices to prove that v4

is to the right of the line from v0 to v2. Assume by suitable translation that
vertex v0 is at the origin, and let θ be the interior angle at v0. Then v1 has
coordinates 〈`1 cos θ, `1 sin θ〉 and v4 = 〈`6 − `1 cos θ, `1 sin θ〉. The x coordinate
of v2 is 1

2`6 − 1
2`3, which by adding half of Property 1 is `1 − `2. Now consider

the right triangle v1v2x, where x is the point below v1 and horizontal with v2.
The hypotenuse is `2, and the horizontal edge has length (`1 − `2) − `1 cos θ =
`1(1 − cos θ) − `2, so the vertical edge has length

√
`22 − (`1(1− cos θ)− `2)2.

Thus, v2 = 〈`1 − `2, `1 sin θ −
√

`22 − (`1(1− cos θ)− `2)2〉. Note that, for v2 to
have a valid (noncomplex) solution, we must have 2`2 > `1, which is part of
Property 3.

Now, v4 is to the right of the line from v0 to v2 if and only if the signed area
of the triangle v0v2v4 is negative. Thus we desire the following inequality:

x1 y1 1
x3 y3 1
x5 y5 1

=
0 0 1

`1 − `2 `1 sin θ −
√

`22 − (`1(1− cos θ)− `2)2 1
`6 − `1 cos θ `1 sin θ 1

< 0.

After significant simplification, this inequality becomes

`1(cos θ−1)(`1−`2)[`21(1+3 cos θ+4 cos2 θ)−`6`1(2+6 cos θ)+2`26−`1`2(1+cos θ)] < 0.

Because θ is between 0 and π, and `2 < `1, this inequality is equivalent to

`21(1 + 3 cos θ + 4 cos2 θ)− `6`1(2 + 6 cos θ) + 2`26 − `1`2(1 + cos θ) > 0.

Also, because `2 < `1, it is enough to show

`21(2 cos θ + 4 cos2 θ)− `6`1(2 + 6 cos θ) + 2`26 > 0.

If `6 = α`1, then the inequality becomes

(cos θ + 2 cos2 θ)− α(1 + 3 cos θ) + α2 > 0.



The maximum lower bound on α that satisfies this inequality occurs at θ = 0;
in this case, we obtain 3 − 4α + α2 = 0, which has solution α = 3. Therefore,
Condition 4 that `6 > 3`1 suffices.

We can easily show that every accumulation point of our deflation sequence
is flat: because each of the chains v0, v1, v2; v3, v4, v5; and v1, v2, v3, v4 deflate
infinitely, then by Lemma 5, in every accumulation point, the vertices of each of
the chains are collinear, forcing all six vertices to be collinear. 2

7 Open Problems

It remains open whether there exist n-gons, n ≥ 6, that have no straight vertices
and deflate infinitely for every deflation sequence to flat accumulation points.
Also, does every infinite deflation sequence have a (unique) limit? Our proofs
would likely simplify if we knew there were only one accumulation point.

Is there an efficient algorithm to determine whether a given polygon P has an
infinite deflation sequence? What about detecting whether all deflation sequences
are infinite? Even given a (succinctly encoded) infinite sequence of deflations,
can we efficiently determine whether the sequence is valid?
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