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Abstract

This paper builds a general mathematical and algorithmic theory for balloon-twisting structures,
from balloon animals to balloon polyhedra, by modeling their underlying graphs (edge skeleta). In
particular, we give algorithms to find the fewest balloons that can make exactly a desired graph or, using
fewer balloons but allowing repeated traversal or shortcuts, the minimum total length needed by a given
number of balloons. In contrast, we show NP-completeness of determining whether such an optimal
construction is possible with balloons of equal length.

What if Euler were a clown?

(a) Classic dog (one balloon). (b) Octahedron (one balloon).

Figure 1: Two one-balloon constructions and their associated graphs.

1 Introduction

Balloon twisting (or balloon modeling) is a form of sculpture rooted in the magic community starting in the
1930s [Bal02]. Modern balloon twisters gather at the annual Twist & Shout convention1 and are the subject
of an excellent documentary [GT07]. In this paper, we investigate the geometric and algorithmic nature
inherent in this art form, founding the new field of computational balloon twisting. In particular, we apply
this perspective to the design of balloon polyhedra, which have been developed experimentally for several
years [EKR00, Wor07, Sha07, Mor07, Sab08]. Figure 1 gives a sense of our graph-theoretic view.
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(a) Triangular dipyramid (one balloon). (b) 4-simplex (one balloon). (c) Cuboctahedron (one balloon).

Figure 2: Examples of one-balloon polyhedra.

Motivation. In addition to sculpture and entertainment, computational balloon twisting has two motivating
applications.

The first motivation is education. Balloon twisting is fun: the activity can both entertain and engage
children of all ages. Thus balloon twisting can be a vehicle for teaching mathematical concepts inherent in
balloons. As we will see, these topics include graph theory, graph algorithms, Euler tours, Chinese postman
tours, polyhedra (both 3D and 4D), coloring, symmetry, and even NP-completeness. Even the models alone
are useful for education, e.g., in illustrating molecules in chemistry [EKR00].

The second motivation is building architectural structures with air beams; see, e.g., [Kro03, Daw03,
SSC05, Tur07]. Our approach suggests that one long, low-pressure tube enables the temporary construction
of inflatable shelters, domes, and many other polyhedral structures, which can be later reconfigured into dif-
ferent shapes and re-used at different sites. In contrast to previous work, which designs a different inflatable
shape specifically for each desired structure, we show the versatility of a single tube.

Related work. Twisting balloons into the graphs (edge skeleta) of polyhedra, like in Figures 1(b) and 2,
is not new. To the best of our knowledge, the idea originated in 2000 by a team of three German chemists
[EKR00], one of whom is also a professional balloon entertainer. Motivated by building educational models
for teaching chemistry and mathematics, they give seminars on how to twist a tetrahedron from two balloons,
an octahedron from one balloon, a truncated icosahedron (soccer ball) from 31 balloons, as well as two 3D
tilings.

Several others have independently invented the idea of balloon polyhedra. An American program-
mer/origamist twisted five intersecting tetrahedra from fifteen balloons [Wor07]. In the only known physical
publication, a professional origami/juggling/balloon entertainer [Sha07] designed an icosahedron twisted
from six balloons. A Canadian mathematician now in the United States [Mor07] posts instructional videos
on YouTube for twisting an octahedron from one balloon, a cuboctahedron from one balloon, a pentago-
nal antiprism from one balloon, an icosahedron with some extra internal structure from three balloons, a
rhombic dodecahedron with some extra internal structure from two balloons, a dodecahedron with some
doubled edges from three balloons, a cube from four balloons, an icosidodecahedron from six balloons, and
a 4-simplex from one balloon. Most recently, an Israeli balloon twister [Sab08] described how to twist a
snub dodecahedron and a snub truncated icosahedron.
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Outline. We begin with the basics of practical balloon twisting (Section 2) and their mathematical ideal-
izations called “bloons” (Section 3). Then we consider the mathematics of three such models in turn: simple
twisting (Section 4), pop twisting (Section 5), and equalizing bloon lengths (Section 6). Finally, we give
several constructions of balloon polyhedra, including optimal constructions for Platonic and Archimedean
solids (Section 7).

2 Balloon Basics

The majority of balloon twisting starts from a long, narrow balloon. The most common are the 260, which
measures 2 inches in diameter and 60 inches in length when fully inflated, and the 160, measuring 1 × 60
inches when fully inflated.

Normally the balloonist only partially inflates such a balloon, leaving one end deflated as in Figure 3(a).
This deflated end leaves room for the air to spread out when twisting the balloon along a circular cross-
section, forming a vertex as in Figure 3(b). The vertex holds its shape if wrapped around another vertex,
as in Figure 3(c). The figure shows the vertex coming from another balloon, but it could just as well come
from another part of the same balloon, as in the middle of Figure 3(d). Indeed, one theme in balloon twisting
is designing complex figures (often animals) from a single balloon, and in this paper we often aim for this
goal or for minimizing the number of balloons. Vertex joints can also be bent, similar to joints in a linkage,
and will hold their shape if the linkage forces them to remain bent by a nontrivial angle, as on the right of
Figure 3(d).

(a) A balloon.

(b) Twisted. (c) Two balloons, twisted.

(d) A balloon twisted
into a triangle.

Figure 3: Twisting balloons.

3 Twistable Tangles: Bloon Models

Inflated balloon segments and their twisted end vertices naturally form a graph, as illustrated in Figure 1.
Our central problem is to determine which graphs are twistable under a variety of abstract models of physical
balloons, which we refer to as “bloons” for contrast.

In general, a bloon is a (line) segment which can be twisted at arbitrary points to form vertices at which
the bloon can be bent like a hinge. The endpoints of a bloon are also vertices. Two vertices can be tied to
form permanent point connections. A twisted bloon is stable if every vertex is either tied to another vertex
or held at a nonzero bending angle.

We distinguish two main models of bloon twisting:

1. (Simple) twisting: Every subsegment of a bloon between two vertices forms an edge in the associated
graph, representing an inflated portion of a balloon.

2. Pop twisting: Some subsegments of a bloon between two vertices can be marked as deflated, causing
them not to appear in the associated graph. Such deflated segments can be achieved with physical
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balloons by squeezing or sucking the air down the balloon or by popping a segment between two
existing vertices (a practice common in balloon twisting, though requiring some care and skill). See
Figure 4.

Figure 4: Pop-twisting a tetrahedron from one balloon.

Two other parameters shape the model:

3. Number of bloons: In general we allow structures consisting of any number k of bloons. Of particular
interest are the case k = 1 and minimizing the number of bloons. A graph has bloon number k if it
can be simply twisted from k bloons and no fewer.

4. Bloon lengths: For multibloon structures, we prefer the bloons to have the same or similar lengths. In
particular, this constraint helps us avoid the need for extremely long balloons (which are difficult to
obtain). An `-bloon is a bloon of length `. We often consider graphs whose edges have unit length,
and hence particular cases like doubloons (` = 2) and demidoubloons (` = 1) are of interest.

This bloon model fails to capture one important aspect of real balloons, namely thickness. Effectively we
model sufficiently narrow/long balloons. Real balloons, however, cannot fit through arbitrarily small holes,
preventing one end of the balloon from fitting through an already constructed face. In practice, however, we
can avoid such collisions by threading just the deflated end of the balloon through the hole, then sucking on
the end to transfer the remaining air through the hole. Readers beware: this act is a choking hazard. The
process is easier if, before twisting, you inflate the entire balloon, breaking the material tension, then let out
the excess air. In future work, it would be interesting to model and minimize this difficulty.

4 Euler Outgrowth: Bloon Number

Simple twisting of a single bloon naturally forms an Eulerian tour of the constructed graph. Thus single-
bloon graphs must have vertices of even degree, except possibly for two odd degrees, and must be connected.
Indeed, such graphs are always twistable:

Theorem 1 A graph has bloon number 1 if and only if the graph is Eulerian.

More interesting from a technical standpoint is the case of k bloons (of arbitrary lengths). Here we can
exactly characterize bloon number:

Theorem 2 A graph with o > 0 odd vertices has bloon number o/2.

Proof: Every odd-degree vertex must have an odd number of bloon ends, and each bloon has only two
ends, so o/2 bloons are necessary. To see that o/2 bloons suffice, consider adding o/2 edges connecting
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the odd-degree vertices in pairs. (Recall that every graph has an even number of odd-degree vertices.) The
resulting graph has all even degrees and hence an Euler tour. Removing the o/2 added edges from the tour
results in o/2 paths, which are the desired bloons. 2

A simple example is Euler’s graph of the Königsburg bridges, which has seven edges and four vertices
(land masses) all of odd degree, and hence has bloon number 2.

5 Chinese Connection: Pop Twisting

Pop twisting is of course the more general model: it allows building any graph (without straight degree-2
vertices) from a single bloon. In this context, the natural objective is to minimize the total deflated length of
the bloon, or equivalently, the total length of the bloon.

This problem is similar to the Chinese Postman Problem: given a graph, find a tour of minimum length
that visits all edges. This problem has a classic polynomial-time solution based on adding to the graph a
minimum-cost perfect matching of the complete graph Ko on the o odd-degree vertices, resulting in the
cheapest Eulerian supergraph. The costs in the complete graph can be defined by shortest paths in the graph
(for hiding deflated segments against inflated segments), or to include shortcuts available to the bloon in 3D.

The difference is that a pop twisting of a polyhedron requires a path, while the Chinese postman finds the
optimal tour (cycle). To find the optimal path, we instead add the minimum-cost (o/2 − 1)-edge matching
in Ko, leaving exactly two odd vertices. More generally, if we are given k bloons instead of one, we can
add a minimum-cost (o/2− k)-edge matching, leaving exactly 2k odd vertices; by Theorem 2, the resulting
graph can be traversed by k paths. Such a matching can be computed as a minimum-cost maximum flow
in the complete bipartite graph Ko,o, with edge costs defined as in Ko, together with a source of capacity
o/2− k attached to one side of the bipartition via edges of capacity 1, and a sink attached to the other side
of the bipartition via edges of capacity 1.

Theorem 3 There is a polynomial-time algorithm that, given a graph and a desired k ≥ 1, finds the k
bloons of minimum total length that pop-twist the graph.

6 Length Limitations: Holyer’s Problem

Given a graph simply twistable from k > 1 bloons, how similar in length can the k bloons be? In particular,
when can the lengths all be identical? We can specialize further to obtain a clean combinatorial problem by
supposing graph edges all have unit length, as in regular polyhedra, and the bloons have integer length `.
What graphs can be simply twisted from `-bloons?

This problem is closely related to Holyer’s problem: decide whether the edges of a graph can be decom-
posed into copies of a fixed graph H . In 1981, Holyer [Hol81] conjectured that this problem is NP-complete
if H has at least three edges. This conjecture turns out to be correct when H is connected. In fact, the
problem is NP-complete if H has a connected component consisting of at least three edges [DT97], and
otherwise the problem can be solved in polynomial time [BL]. (This solution was even further generalized
to multigraphs [KLMS04].) Of particular relevance is an old result that every graph with an even number
of edges can be decomposed into length-2 paths [Kot57] (see [KLMS04] and the different generalization
of [JRP85]):

Theorem 4 Every graph with unit edge lengths can be twisted from doubloons and possibly one demidou-
bloon (when the graph has an odd number of edges).
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Figure 5: NP-hardness of using the fewest possible equal balloons.

For ` > 2, however, there is a discrepancy between Holyer’s problem and simply twisting from `-
bloons. On the one hand, each `-bloon can be twisted into any Eulerian graph on ` edges. On the other
hand, Holyer’s problem assumes all bloons form the same such graph, e.g., a path of ` edges or a cycle of
` edges. Therefore the known NP-hardness for Holyer’s problem beyond two edges does not immediately
imply NP-hardness for simple twisting beyond doubloons. Fortunately, one NP-hardness proof for Holyer’s
problem also establishes NP-hardness of simple twisting, even for planar bipartite graphs:

Theorem 5 It is NP-complete to decide whether a planar bipartite graph with unit edge lengths can be
simply twisted from `-bloons.

Proof: Dyer and Frieze [DF85, Theorem 3.4] prove NP-hardness of Holyer’s problem when the graph to
decompose is planar and bipartite and the pattern graph H is a path of length ` > 2. Their reduction has the
additional feature that all cycles have length larger than `, and hence no `-bloon could form a structure other
than a path of length `. 2

We can specialize even further and still obtain NP-hardness. Theorem 2 characterizes the fewest bloons
required for simple twisting. When can these fewest bloons have the same length? What if the graph is the
edge skeleton of a convex polyhedron, or by Steinitz’s Theorem, 3-connected and planar?

Theorem 6 It is strongly NP-complete to decide whether a planar 3-connected graph with o odd vertices
can be simply twisted from o/2 equal-length bloons.

Proof: Figure 5 shows a reduction from 3-partition: given integers a1, a2, . . . , an, partition into triples
of equal sum. The light portion of the graph just makes the graph 3-connected. The dark portion con-
sists of n/3 odd-degree vertices on the left, L1, L2, . . . , Ln/3, and n/3 odd-degree vertices on the right,
R1, R2, . . . , Rn/3. All other vertices will have even degree. We can imagine building n/3 paths between
corresponding Li and Ri, for 1 ≤ i ≤ n/3, and then pinching these paths together at n + 1 meeting points.
Then a left-to-right path has a choice at each meeting point of which path to follow. Exactly one path can
follow an edge of length ai; the others follow paths of total length B. Here B > a1 + a2 + · · ·+ an. Thus
each path must visit an equal number of Bs, namely n − n/3 + 2 of them. The path including L1 has a
special edge of length ε less. Here ε < min{a1, a2, . . . , an} and the total length of the light portion of the
graph is ε. Thus only this path can visit light edges, and must visit all. Therefore the graph can be twisted
by n/3 equal-length bloons if and only if the 3-partition instance has a solution. 2

By suitable scaling, we can make all edge lengths integers, and then subdivide edges into unit lengths.
It seems somewhat difficult, however, to make the graph 3-connected by adding a suitable light Eulerian
graph.

Some positive results are known for special cases of Holyer’s problem. For example, every 4-regular
connected graph whose number of edges is divisible by 3 can be decomposed into paths of length 3, and
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(a) Tetrahedron (two balloons). (b) Cube (four balloons). (c) Octahedron (one balloon).

(d) Icosahedron (six balloons). (e) Dodecahedron (ten balloons).

Figure 6: Platonic balloons.

hence simply twisted from tribloons [HLY99]. The same decomposition and twisting results hold for trian-
gulated (maximal) planar graphs with at least four vertices [HJ04]. It is conjectured that every simple planar
2-edge-connected graph whose number of edges is divisible by 3 can be decomposed into paths and cycles
of length 3, and hence simply twisted from tribloons [JRP85]. See also [KT03]. But relatively few results
are known for sizes larger than 3.

7 Polyhedral Projects: Balloon Polyhedra

A wealth of polyhedra lies ready to be twisted from balloons. Figures 2, 6, and 8 show photographs of
some of our constructions. Two infinite classes of polyhedra with bloon number 1 are dipyramids (as in
Figure 2(a)) and antiprisms. Any star-shaped polyhedron (e.g., any convex polyhedron) can be converted to
have bloon number 1 by adding an edge from every odd-degree vertex to a central point. In particular, for a
tetrahedron, we arrive at the 4-simplex (Figure 2(b)), Symmetric convex polyhedra without internal structure
and with bloon number 1 include the octahedron (Figure 6(c), also an antiprism) and the cuboctahedron
(Figure 2(c)), leading us to the topic of Platonic and Archimedean solids.

In contrast to the hardness result of Theorem 6, we show that every Platonic and Archimedean solid in
3D can be twisted using the bloon number of bloons, o/2, all of equal length. Furthermore, these solids can
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(a) Tetrahedron construction. (b) Octahedron construction.

Figure 7: Constructing two Platonic solids.

be twisted so that the component bloon units are all isomorphic and arranged in a symmetric manner. This
property makes these polyhedra particularly easy to construct, and lends itself well to color patterns.

Figure 7 shows how to construct two Platonic solids: the tetrahedron and octahedron. We describe the
icosahedron below because it can also be viewed as a snub tetrahedron. The cube and dodecahedron are
both possible with tribloons, and together with the tetrahedron are special in that the collection of bloon
units can have at most dihedral symmetry. In contrast, the icosahedron construction has pyrite symmetry,
while the Archimedean constructions below (and the octahedron) have the same symmetry group as the
original polyhedron.

The Archimedean solids can be categorized into three different groups for our purposes: Eulerian, trun-
cated, and snub. The Eulerian case is of course trivial. For any truncated polyhedron (not just Archimedean),
the optimal bloons are tribloons: if the original polyhedron (before truncation) has m edges, then the trun-
cation has 3m edges and 2m vertices, all of odd degree, so m (tri)bloons are necessary. The tribloons can
be embedded as Zs (or Ss, as the result is chiral), where each center edge aligns with an edge of the original
polyhedron, with the arms bending to form the truncated faces. (Other tribloon solutions are also possible,
though not as symmetric.) The snub polyhedra (including the icosahedron) can be made from a common
unit, namely, a quintibloon twisting into the shape of two triangles sharing an edge. (Other quintibloon
solutions are possible that are just as symmetric.)

Of course, not all polyhedra can be made from the bloon number of bloons, o/2, of equal length. The
pentagonal pyramid is a simple example. It has ten edges and six vertices, all of odd degree, yielding a
bloon number of 3. Unfortunately, 10 is not divisible by 3, so one bloon must have length 4. In the realm
of polyhedra with icosahedral symmetry, the simplest counterexample is the rhombic triacontahedron, with
60 edges and 32 vertices, which again do not divide evenly. It remains open to find interesting polyhedra
that fail to have a twisting from a bloon number of equal-length bloons but not by virtue of indivisibility. It
also remains open whether some symmetric polyhedron can be twisted only from nonidentical units or only
from units arranged asymmetrically.
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Figure 8: Five intersecting tetrahedra (fifteen balloons).
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