
Polynomial-Time Algorithm for

Sliding Tokens on Trees

Erik D. Demaine1, Martin L. Demaine1, Eli Fox-Epstein2,
Duc A. Hoang3, Takehiro Ito4, Hirotaka Ono5, Yota Otachi3,

Ryuhei Uehara3, and Takeshi Yamada3

1 MIT Computer Science and Artificial Intelligence Laboratory, USA.
{edemaine, mdemaine}@mit.edu

2 Department of Computer Science, Brown University, USA.
ef@cs.brown.edu

3 School of Information Science, JAIST, Japan.
{hoanganhduc, otachi, uehara, tyama}@jaist.ac.jp

4 Graduate School of Information Sciences, Tohoku University, Japan.
takehiro@ecei.tohoku.ac.jp

5 Faculty of Economics, Kyushu University, Japan.
hirotaka@econ.kyushu-u.ac.jp

Abstract. Suppose that we are given two independent sets Ib and Ir of
a graph such that |Ib| = |Ir|, and imagine that a token is placed on each
vertex in Ib. Then, the sliding token problem is to determine whether
there exists a sequence of independent sets which transforms Ib into Ir so
that each independent set in the sequence results from the previous one
by sliding exactly one token along an edge in the graph. This problem
is known to be PSPACE-complete even for planar graphs, and also for
bounded treewidth graphs. In this paper, we show that the problem is
solvable for trees in quadratic time. Our proof is constructive: for a yes-
instance, we can find an actual sequence of independent sets between Ib
and Ir whose length (i.e., the number of token-slides) is quadratic. We
note that there exists an infinite family of instances on paths for which
any sequence requires quadratic length.

1 Introduction

Recently, reconfiguration problems attract the attention in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step trans-
formation between two feasible solutions of a problem such that all intermediate
results are also feasible and each step abides by a fixed reconfiguration rule (i.e.,
an adjacency relation defined on feasible solutions of the original problem). This
kind of reconfiguration problem has been studied extensively for several well-
known problems, including independent set [4, 6, 9–12, 15, 17, 18, 20], satisfi-
ability [8, 16], set cover, clique, matching [11], vertex-coloring [2, 5,
20], list L(2, 1)-labeling [13], shortest path [3, 14], and so on. (See also a
recent survey [19].)

(a) Ib = I1 (b) I2 (c) I3 (d) I4 (e) Ir = I5

w wwww

Fig. 1. A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the
vertices in independent sets are depicted by large black circles (tokens).

1.1 Sliding token

The sliding token problem was introduced by Hearn and Demaine [9] as a one-
player game, which can be seen as a reconfiguration problem for independent
set. Recall that an independent set of a graph G is a vertex-subset of G in which
no two vertices are adjacent. (Figure 1 depicts five different independent sets in
the same graph.) Suppose that we are given two independent sets Ib and Ir of a
graph G = (V,E) such that |Ib| = |Ir|, and imagine that a token (coin) is placed
on each vertex in Ib. Then, the sliding token problem is to determine whether
there exists a sequence 〈I1, I2, . . . , Iℓ〉 of independent sets of G such that
(a) I1 = Ib, Iℓ = Ir , and |Ii| = |Ib| = |Ir | for all i, 1 ≤ i ≤ ℓ; and
(b) for each i, 2 ≤ i ≤ ℓ, there is an edge {u, v} in G such that Ii−1 \ Ii = {u}

and Ii \Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly
one token on a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.

Such a sequence is called a reconfiguration sequence between Ib and Ir. Figure 1
illustrates a reconfiguration sequence 〈I1, I2, . . . , I5〉 of independent sets which
transforms Ib = I1 into Ir = I5. Hearn and Demaine proved that sliding token

is PSPACE-complete for planar graphs, as an example of the application of their
powerful tool, called the nondeterministic constraint logic model, which can be
used to prove PSPACE-hardness of many puzzles and games [9], [10, Sec. 9.5].

1.2 Related and known results

As the (ordinary) independent set problem is a key problem among thousands
of NP-complete problems, sliding token plays a very important role since
several PSPACE-hardness results have been proved using reductions from it.
Indeed, sliding token is one of the most well-studied reconfiguration problems.

In addition, reconfiguration problems for independent set (ISReconf, for
short) have been studied under different reconfiguration rules, as follows.

• Token Sliding (TS rule) [5, 6, 9, 10, 15, 20]: This rule corresponds to the
sliding token problem, that is, we can slide a single token only along
an edge of a graph.

• Token Jumping (TJ rule) [6, 12, 15, 20]: A single token can “jump” to any
vertex (including non-adjacent one) if it results in an independent set.

• Token Addition and Removal (TAR rule) [4, 11, 15, 17, 18, 20]: We can ei-
ther add or remove a single token at a time if it results in an independent
set of cardinality at least a given threshold. Therefore, under the TAR
rule, independent sets in the sequence do not have the same cardinality.

Ib Ir

Fig. 2. A yes-instance for ISReconf under the TJ rule, which is a no-instance for the
sliding token problem.

We note that the existence of a desired sequence depends deeply on the reconfigu-
ration rules. (See Fig. 2 for example.) However, ISReconf is PSPACE-complete
under any of the three reconfiguration rules for planar graphs [5, 9, 10], for per-
fect graphs [15], and for bounded bandwidth graphs [20]. The PSPACE-hardness
implies that, unless NP = PSPACE, there exists an instance of sliding token

which requires a super-polynomial number of token-slides even in a minimum-
length reconfiguration sequence. In such a case, tokens should make “detours” to
avoid violating independence. (For example, see the token placed on the vertex
w in Fig. 1(a); it is moved twice even though w ∈ Ib ∩ Ir .)

We here explain only the results which are strongly related to this paper,
that is, sliding token on trees; see the references above for the other results.

Results for TS rule (sliding token).
Kamiński et al. [15] gave a linear-time algorithm to solve sliding token for

cographs (also known as P4-free graphs). They also showed that, for any yes-
instance on cographs, two given independent sets Ib and Ir have a reconfiguration
sequence such that no token makes detour.

Very recently, Bonsma et al. [6] proved that sliding token can be solved in
polynomial time for claw-free graphs. Note that neither cographs nor claw-free
graphs contain trees as a (proper) subclass. Thus, the complexity status for trees
was open under the TS rule.

Results for trees.
In contrast to the TS rule, it is known that ISReconf can be solved in linear

time under the TJ and TAR rules for even-hole-free graphs [15], which include
trees. Indeed, the answer is always “yes” under the two rules when restricted
to even-hole-free graphs (as long as two given independent sets have the same
cardinality for the TJ rule.) Furthermore, tokens never make detours in even-
hole-free graphs under the TJ and TAR rules.

On the other hand, under the TS rule, tokens are required to make detours
even in trees. (See Fig. 1.) In addition, there are no-instances for trees under
TS rule. (See Fig. 2.) These make the problem much more complicated, and we
think they are the main reasons why sliding token for trees was open, despite
the recent intensive algorithmic research on ISReconf [4, 6, 12, 15, 18].

1.3 Our contribution

In this paper, we show that the sliding token problem can be solved in time
O(n2) for any tree T with n vertices. Therefore, we can conclude that ISReconf

for trees is in P under any of the three reconfiguration rules.

We give a constructive proof: for a yes-instance, we can find an actual recon-
figuration sequence between two given independent sets whose length is O(n2).
We note that there exists an infinite family of instances on paths for which any
reconfiguration sequence requires Ω(n2) length.

We note that, since the treewidth of any graph G can be bounded by the
bandwidth of G, the result of [20] implies that sliding token is PSPACE-
complete for bounded treewidth graphs. (See [1] for the definition of treewidth.)
Thus, there exists an instance on bounded treewidth graphs which requires a
super-polynomial number of token-slides even in a minimum-length reconfigu-
ration sequence unless NP = PSPACE. Therefore, it is remarkable that any
yes-instance on a tree, whose treewidth is one, has an O(n2)-length reconfigura-
tion sequence even though trees certainly require to make detours to transform.

1.4 Technical overview

We here explain our main ideas; formal descriptions will be given later.
We say that a token on a vertex v is “rigid” under an independent set I of a

tree T if it cannot be slid at all, that is, v ∈ I ′ holds for any independent set I ′

of T which is reconfigurable from I. (For example, in Fig. 2, every token in the
two independent sets is rigid.) Our algorithm is based on the following two key
points.
(1) In Lemma 1, we will give a simple but non-trivial characterization of rigid

tokens, based on which we can find all rigid tokens of two given indepen-
dent sets Ib and Ir in time O(n2). Note that, if Ib and Ir have different
placements of rigid tokens, then it is a no-instance (Lemma 4).

(2) Otherwise, we obtain a forest by deleting the vertices with rigid tokens
together with their neighbors (Lemma 5). We will prove in Lemma 6 that
the answer is “yes” as long as each tree in the forest contains the same
number of tokens in Ib and Ir.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

In this section, we introduce some basic terms and notation.

2.1 Graph notation

In the sliding token problem, we may assume without loss of generality that
graphs are simple and connected. For a graph G, we sometimes denote by V (G)
and E(G) the vertex set and edge set of G, respectively.

In a graphG, a vertex w is said to be a neighbor of a vertex v if {v, w} ∈ E(G).
For a vertex v in G, let N(G, v) = {w ∈ V (G) | {v, w} ∈ E(G)}. Let N [G, v] =
N(G, v)∪{v}. For a subset S ⊆ V (G), we simply write N [G,S] =

⋃

v∈S N [G, v].
For a subgraph G′ of a graph G, we denote by G\G′ the subgraph of G induced
by the vertices in V (G) \ V (G′).

u

v

T uv

Fig. 3. Subtree T u

v in the whole tree T .

Let T be a tree. For two vertices v and w in T , the unique path between v

and w is simply called the vw-path in T . We denote by dist(v, w) the number
of edges in the vw-path in T . For two vertices u and v of a tree T , let T u

v be
the subtree of T obtained by regarding u as the root of T and then taking the
subtree rooted at v which consists of v and all descendants of v. (See Fig. 3.) It
should be noted that u is not contained in the subtree T u

v .

2.2 Definitions for sliding token

Let Ii and Ij be two independent sets of a graph G such that |Ii| = |Ij |. If there
exists exactly one edge {u, v} in G such that Ii \ Ij = {u} and Ij \ Ii = {v},
then we say that Ij can be obtained from Ii by sliding the token on u ∈ Ii to its
adjacent vertex v along the edge {u, v}, and denote it by Ii ↔ Ij . We note that
the tokens are unlabeled, while the vertices in a graph are labeled. We sometimes
omit to say the vertex on which a token is placed, and simply say a token in an
independent set I.

A reconfiguration sequence between two independent sets I1 and Iℓ of G is
a sequence 〈I1, I2, . . . , Iℓ〉 of independent sets of G such that Ii−1 ↔ Ii for i =
2, 3, . . . , ℓ. We sometimes write I ∈ S if an independent set I of G appears in the

reconfiguration sequence S. We write I1
G
! Iℓ if there exists a reconfiguration

sequence S between I1 and Iℓ such that all independent sets I ∈ S satisfy
I ⊆ V (G); we here define the notation emphasized with the graph G, because
we will apply this notation to a subgraph of G. The length of a reconfiguration
sequence S is defined as the number of independent sets contained in S. For
example, the length of the reconfiguration sequence in Fig. 1 is 5.

Given two independent sets Ib and Ir of a graph G, the sliding token prob-

lem is to determine whether Ib
G
! Ir or not. We may assume without loss of

generality that |Ib| = |Ir|; otherwise the answer is clearly “no.” Note that slid-
ing token is a decision problem asking for the existence of a reconfiguration
sequence between Ib and Ir, and hence it does not ask for an actual reconfigura-
tion sequence. We always denote by Ib and Ir the initial and target independent
sets of G, respectively.

3 Algorithm for Trees

In this section, we give the main result of this paper.

Theorem 1. For a tree T with n vertices, the sliding token problem can be

solved in O(n2) time.

t1

t2 t5
t6

t3
t4

t7

TT

Fig. 4. An independent set I of a tree T , where t1, t2, t3, t4 are (T, I)-rigid tokens and
t5, t6, t7 are (T, I)-movable tokens. Token t1 is (T ′, I ∩ T ′)-movable for the subtree T ′,
and tokens t6 and t7 are (T ′′, I ∩ T ′′)-rigid for the subtree T ′′.

As a proof of Theorem 1, we give an O(n2)-time algorithm which simply
solves sliding token for a tree with n vertices. In Section 3.3 we will show
that an actual reconfiguration sequence can be obtained for a yes-instance on
trees, and we will estimate its length.

3.1 Rigid tokens

In this subsection, we formally define the concept of rigid tokens, and give their
nice characterization.

Let T be a tree, and let I be an independent set of T . We say that a token on
a vertex v ∈ I is (T, I)-rigid if v ∈ I ′ holds for any independent set I ′ of T such

that I
T
! I ′. Conversely, if a token on a vertex v ∈ I is not (T, I)-rigid, then

it is (T, I)-movable; in other words, there exists an independent set I ′ such that

v 6∈ I ′ and I
T
! I ′. For example, in Fig. 4, the tokens t1, t2, t3, t4 are (T, I)-rigid,

while the tokens t5, t6, t7 are (T, I)-movable. Note that, even though t6 and t7
cannot be slid to any neighbor in I, we can slide them after sliding t5 downward.

We then extend the concept of rigid/movable tokens to subtrees of T . For any
subtree T ′ of T , we denote simply I ∩T ′ = I ∩V (T ′). Then, a token on a vertex
v ∈ I ∩ T ′ is (T ′, I ∩ T ′)-rigid if v ∈ J holds for any independent set J of T ′

such that I ∩T ′ T ′

! J ; otherwise the token is (T ′, I ∩ T ′)-movable. For example,
in Fig. 4, the token t1 is (T ′, I ∩ T ′)-movable even though it is (T, I)-rigid in
the whole tree T , while tokens t6 and t7 are (T ′′, I ∩ T ′′)-rigid even though they
are (T, I)-movable in T . Note that, since independent sets are restricted only to
the subtree T ′, we cannot use any vertex (and hence any edge) in T \ T ′ during
the reconfiguration. Furthermore, the vertex-subset J ∪

(

I ∩ (T \ T ′)
)

does not
necessarily form an independent set of the whole tree T .

We now give our first key lemma, which gives a characterization of rigid
tokens. (See also Fig. 5(a) for the claim (b) below.)

Lemma 1. Let I be an independent set of a tree T , and let u be a vertex in I.

(a) Suppose that |V (T)| = |{u}| = 1. Then, the token on u is (T, I)-rigid.
(b) Suppose that |V (T)| ≥ 2. Then, a token on u is (T, I)-rigid if and only if,

for all neighbors v ∈ N(T, u), there exists a vertex w ∈ I ∩N(T u
v , v) such

that the token on w is (T v
w, I ∩ T v

w)-rigid.

u
v

w

T vw

T uv

u
v

w

T vw

(a) (b)

Fig. 5. (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u.

Proof. Obviously, the claim (a) holds. In the following, we thus assume that
|V (T)| ≥ 2 and prove the claim (b).

We first show the if-part. Suppose that, for all neighbors v ∈ N(T, u), there
exists a vertex w ∈ I ∩N(T u

v , v) such that the token on w is (T v
w, I ∩ T v

w)-rigid.
(See Fig. 5(a).) Then, we will prove that the token t on u is (T, I)-rigid. Since
we can slide a token only along an edge of T , if t is not (T, I)-rigid (and hence
is (T, I)-movable), then it must be slid to some neighbor v ∈ N(T, u). By the
assumption, v is adjacent with another token t′ placed on w ∈ I ∩N(T u

v , v), and
hence we first have to slide t′ to one of its neighbors other than v. However, this
is impossible since the token t′ on w is assumed to be (T v

w, I ∩ T v
w)-rigid and

hence w ∈ J holds for any independent set J of T v
w such that I ∩ T v

w

Tv
w

! J . We
can thus conclude that t is (T, I)-rigid.

We then show the only-if-part by taking a contrapositive. Suppose that u

has a neighbor v ∈ N(T, u) such that either I ∩ N(T u
v , v) = ∅ or all tokens on

w ∈ I ∩N(T u
v , v) are (T

v
w, I ∩ T v

w)-movable. (See Fig. 5(b).) Then, we will prove
that the token t on u is (T, I)-movable; in particular, we can slide t from u to
v. Since any token t′ on a vertex w ∈ I ∩N(T u

v , v) is (T v
w, I ∩ T v

w)-movable, we
can slide t′ to some vertex in T v

w via a reconfiguration sequence Sw in T v
w. Recall

that only the vertex v is adjacent with a vertex in T v
w and v 6∈ I. Therefore, Sw

can be naturally extended to a reconfiguration sequence S in the whole tree T

such that I ′ ∩
(

T \ T v
w

)

= I ∩
(

T \ T v
w

)

holds for any independent set I ′ ∈ S of
T . Apply this process to all tokens on vertices in I ∩ N(T u

v , v), and obtain an
independent set I ′′ of T such that I ′′ ∩ N(T u

v , v) = ∅. Then, we can slide the
token t on u to v. Thus, t is (T, I)-movable. ⊓⊔

Lemma 1 implies that we can check whether one token in an independent set
I of a tree T is (T, I)-rigid or not in linear time.

Lemma 2. Given a tree T with n vertices, an independent set I of T , and a

vertex u ∈ I, it can be decided in O(n) time whether the token on u is (T, I)-rigid.

The following lemma is useful for our algorithm in Section 3.2.

Lemma 3. Let I be an independent set of a tree T such that all tokens are

(T, I)-movable, and let v be a vertex such that v 6∈ I. Then, there exists at most

one neighbor w ∈ I ∩N(T, v) such that the token on w is (T v
w, I ∩ T v

w)-rigid.

Proof. Suppose for a contradiction that there exist two neighbors w and w′ in
I ∩N(T, v) such that the tokens on w and w′ are (T v

w, I ∩T v
w)-rigid and (T v

w′ , I ∩

v

w w

T vwT vw

Fig. 6. Illustration for Lemma 3.

T v
w′)-rigid, respectively. (See Fig. 6.) Since the token t on w is (T v

w, I ∩ T v
w)-

rigid but is (T, I)-movable, there is a reconfiguration sequence St starting from
I which slides t to v. However, before sliding t to v, St must slide the token t′

on w′ to some vertex in N(T v
w′, w′). This contradicts the assumption that t′ is

(T v
w′ , I ∩ T v

w′)-rigid. ⊓⊔

3.2 Algorithm

In this subsection, we describe a quadratic-time algorithm to solve the sliding

token problem on trees, and prove its correctness.

Let T be a tree with n vertices, and let Ib and Ir be two given independent
sets of T . For an independent set I of T , we denote by R(I) the set of all vertices
in I on which (T, I)-rigid tokens are placed.

Step 1. Compute R(Ib) and R(Ir) using Lemma 2. If R(Ib) 6= R(Ir), then
return “no”; otherwise go to Step 2.

Step 2. Delete the vertices in N [T,R(Ib)] = N [T,R(Ir)] from T , and obtain
a forest F consisting of q trees T1, T2, . . . , Tq. If |Ib ∩ Tj| = |Ir ∩ Tj |
holds for every j ∈ {1, 2, . . . , q}, then return “yes”; otherwise return
“no.”

By Lemma 2 we can determine whether one token in an independent set
I of T is (T, I)-rigid or not in O(n) time, and hence Step 1 can be done in
time O(n) × (|Ib| + |Ir|) = O(n2). Clearly, Step 2 can be done in O(n) time.
Therefore, our algorithm above runs in O(n2) time in total. In the remainder of
this subsection, we thus prove the correctness of our algorithm.

We first show the correctness of Step 1.

Lemma 4. Suppose that R(Ib) 6= R(Ir) for two given independent sets Ib and

Ir of a tree T . Then, it is a no-instance.

We then show the correctness of Step 2. We first claim that deleting the
vertices with rigid tokens together with their neighbors does not affect the re-
configurability.

Lemma 5. Suppose that R(Ib) = R(Ir) for two given independent sets Ib and

Ir of a tree T , and let F be the forest obtained by deleting the vertices in

N [T,R(Ib)] = N [T,R(Ir)] from T . Then, Ib
T
! Ir if and only if Ib∩F

F
! Ir∩F .

Furthermore, all tokens in Ib∩F are (F, Ib∩F)-movable, and all tokens in Ir∩F
are (F, Ir ∩ F)-movable.

v

u

w

Fig. 7. A degree-1 vertex v of a tree T which is safe.

Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a
tree T . Let F be the forest consisting of q trees T1, T2, . . . , Tq, which is obtained
from T by deleting the vertices in N [T,R(Ib)] = N [T,R(Ir)]. Since we can slide

a token only along an edge of F , we clearly have Ib ∩F
F
! Ir ∩ F if and only if

Ib ∩ Tj

Tj

! Ir ∩ Tj for all j ∈ {1, 2, . . . , q}. Furthermore, Lemma 5 implies that,
for each j ∈ {1, 2, . . . , q}, all tokens in Ib∩Tj are (Tj , Ib∩Tj)-movable; similarly,
all tokens in Ir ∩ Tj are (Tj , Ir ∩ Tj)-movable.

We now give our second key lemma, which completes the correctness proof
of our algorithm.

Lemma 6. Let Ib and Ir be two independent sets of a tree T such that all tokens

in Ib and Ir are (T, Ib)-movable and (T, Ir)-movable, respectively. Then, Ib
T
! Ir

if and only if |Ib| = |Ir|.

The only-if-part is trivial, and hence we prove the if-part. In our proof, we
do not reconfigure Ib into Ir directly, but reconfigure both Ib and Ir into some
independent set I∗ of T .

We say that a degree-1 vertex v of T is safe if its unique neighbor u has at
most one neighbor w of degree more than one. (See Fig. 7.) Note that any tree
has at least one safe degree-1 vertex.

As the first step of the if-part proof, we give the following lemma.

Lemma 7. Let I be an independent set of a tree T such that all tokens in I are

(T, I)-movable, and let v be a safe degree-1 vertex of T . Then, there exists an

independent set I ′ such that v ∈ I ′ and I
T
! I ′.

Proof. Suppose that v 6∈ I; otherwise the lemma clearly holds. We will show
that one of the closest tokens from v can be slid to v. Let M = {w ∈ I |
dist(v, w) = minx∈I dist(v, x)}. Let w be an arbitrary vertex in M , and let P =
(p0 = v, p1, . . . , pℓ = w) be the vw-path in T . (See Fig. 8.) If ℓ = 1 and hence
p1 ∈ I, then we can simply slide the token on p1 to v. Thus, we may assume
that ℓ ≥ 2.

We note that no token is placed on the vertices p0, . . . , pℓ−1 and the neighbors
of p0, . . . , pℓ−2, because otherwise the token on w is not closest to v. Let M ′ =
M ∩ N(T, pℓ−1). Since pℓ−1 6∈ I, by Lemma 3 there exists at most one vertex
w′ ∈ M ′ such that the token on w′ is (T

pℓ−1

w′ , I ∩ T
pℓ−1

w′)-rigid. We choose such a
vertex w′ if it exists, otherwise choose an arbitrary vertex in M ′ and regard it
as w′.

M

w

wv p
1

p
l-1

Fig. 8. Illustration for Lemma 7.

Since all tokens on the vertices w′′ in M ′\{w′} are (T
pℓ−1

w′′ , I∩T
pℓ−1

w′′)-movable,
we first slide the tokens on w′′ to some vertices in T

pℓ−1

w′′ . Then, we can slide the
token on w′ to v along the path P . In this way, we can obtain an independent

set I ′ such that v ∈ I ′ and I
T
! I ′. ⊓⊔

We then prove that deleting a safe degree-1 vertex with a token does not
affect the movability of the other tokens.

Lemma 8. Let v be a safe degree-1 vertex of a tree T , and let T̄ be the subtree

of T obtained by deleting v, its unique neighbor u, and the resulting isolated

vertices. Let I be an independent set of T such that v ∈ I and all tokens are

(T, I)-movable. Then, all tokens in I \ {v} are (T̄ , I \ {v})-movable.

In Lemma 8, note that the token on v is (T u
v , I ∩ T u

v)-rigid since T u
v consists of

a single vertex v. Therefore, no token is placed on degree-1 neighbors of u other
than v, because otherwise it contradicts to Lemma 3; recall that all tokens in I

are assumed to be (T, I)-movable.

Proof of the if-part of Lemma 6.

We prove the if-part of the lemma by the induction on the number of tokens
|Ib| = |Ir|. The lemma clearly holds for any tree T if |Ib| = |Ir| = 1, because T

has only one token and hence we can slide it along the unique path in T .

We choose an arbitrary safe degree-1 vertex v of a tree T , whose unique
neighbor is u. Since all tokens in Ib are (T, Ib)-movable, by Lemma 7 we can

obtain an independent set I ′b of T such that v ∈ I ′b and Ib
T
! I ′b. By Lemma 8

all tokens in I ′b \ {v} are (T̄ , I ′b \ {v})-movable, where T̄ is the subtree defined in
Lemma 8. Similarly, we can obtain an independent set I ′r of T such that v ∈ I ′r,

Ir
T
! I ′r and all tokens in I ′r \{v} are (T̄ , I ′r \{v})-movable. Apply the induction

hypothesis to the pair of independent sets I ′b \ {v} and I ′r \ {v} of T̄ . Then, we

have I ′b \ {v}
T̄
! I ′r \ {v}. Recall that both u 6∈ I ′b and u 6∈ I ′r hold, and u is the

unique neighbor of v in T . Therefore, we can extend the reconfiguration sequence
in T̄ between I ′b \ {v} and I ′r \ {v} to a reconfiguration sequence in T between

I ′b and I ′r. We thus have Ib
T
! Ir .

This completes the proof of Lemma 6, and hence completes the proof of
Theorem 1. ⊓⊔

IrIb

Fig. 9. No-instance for an interval graph such that all tokens are movable.

3.3 Length of reconfiguration sequence

In this subsection, we show that an actual reconfiguration sequence can be found
for a yes-instance on trees, by implementing our proofs in Section 3.2. Further-
more, the length of the obtained reconfiguration sequence is at most quadratic.

Theorem 2. Let Ib and Ir be two independent sets of a tree T with n vertices.

If Ib
T
! Ir, then there exists a reconfiguration sequence of length O(n2) between

Ib and Ir, and it can be found in O(n2) time.

It is interesting that there exists an infinite family of instances on paths
for which any reconfiguration sequence requires Ω(n2) length, where n is the
number of vertices. For example, consider a path (v1, v2, . . . , v8k) with n = 8k
vertices for any positive integer k, and let Ib = {v1, v3, v5, . . . , v2k−1} and Ir =
{v6k+2, v6k+4, . . . , v8k}. In this yes-instance, any token must be slid Θ(n) times,
and hence any reconfiguration sequence requires Θ(n2) length to slide them all.

4 Concluding Remarks

In this paper, we have developed an O(n2)-time algorithm to solve the sliding

token problem for trees with n vertices, based on a simple but non-trivial char-
acterization of rigid tokens. We have shown that there exists a reconfiguration
sequence of length O(n2) for any yes-instance on trees, and it can be found in
O(n2) time; while there exists an infinite family of instances on paths for which
any reconfiguration sequence requires Ω(n2) length.

Recently, we have improved the running time of our algorithm [7]: we pro-

posed a linear-time algorithm which simply decides whether Ib
T
! Ir or not, for

two given independent sets Ib and Ir of a tree T .
The complexity status of sliding token remains open for chordal graphs

and interval graphs. Interestingly, these graphs have no-instances such that all
tokens are movable. (See Fig. 9 for example.)

Acknowledgments

The authors thank anonymous referees for their helpful suggestions. This work
is supported in part by NSF grant CCF-1161626 and DARPA/AFOSR grant
FA9550-12-1-0423 (E.D. Demaine), and by JSPS KAKENHI 25106504 and
25330003 (T. Ito), 25104521, 26540005 and 26540005 (H. Ono) and 26330009
(R. Uehara).

References

1. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, pp. 1–45 (1998)

2. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. J. Combina-
torial Optimization 27, pp. 132–143 (2014)

3. Bonsma, P.: The complexity of rerouting shortest paths. Theoretical Computer
Science 510, pp. 1–12 (2013)

4. Bonsma, P.: Independent set reconfiguration in cographs. To appear in WG 2014,
also available at arXiv:1402.1587 (2014)

5. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
pp. 5215–5226 (2009)

6. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. Proc. of SWAT 2014, LNCS 8503, pp. 86–97 (2014)

7. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,
Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on
trees. arXiv:1406.6576 (2014)

8. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of Boolean satisfiability: computational and structural dichotomies. SIAM J. Com-
puting 38, pp. 2330–2355 (2009)

9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, pp. 72–96 (2005)

10. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters (2009)
11. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,

R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412, pp. 1054–1065 (2011)

12. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. Proc. of TAMC 2014,
LNCS 8402, pp. 341–351 (2014)

13. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-labelings
in a graph. Theoretical Computer Science 544, pp. 84–97 (2014)

14. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412, pp. 5205–5210 (2011)

15. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoretical Computer Science 439, pp. 9–15 (2012)

16. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean con-
nectivity problem for k-CNF. Theoretical Computer Science 412, pp. 4613–4618
(2011)

17. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the pa-
rameterized complexity of reconfiguration problems. Proc. of IPEC 2013, LNCS
8246, pp. 281–294 (2013)

18. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over
tree decompositions. arXiv:1405.2447

19. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409 (2013).

20. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014)

