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Abstract20

In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an m× n grid of cells, where21

each cell possibly contains a clue among , , . The goal is to partition the grid into disjoint22

rectangles, where every rectangle contains exactly one clue, rectangles containing are square,23

rectangles containing are strictly longer horizontally than vertically, rectangles containing are24

strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this25

puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget26

framework for proving hardness of similar puzzles involving area coverage, and show that it applies27

to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font28

for Tatamibari.29
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1 Introduction35

Nikoli is perhaps the world leading publisher of pencil-and-paper logic puzzles, having invented36

and/or popularized hundreds of different puzzles through their Puzzle Communication Nikoli37

magazine and hundreds of books. Their English website [29] currently lists 38 puzzle types,38

while their “omopa list” [28] currently lists 456 puzzle types and their corresponding first39

appearance in the magazine.40

Nikoli’s puzzles have drawn extensive interest by theoretical computer scientists (including41

the FUN community): whenever a new puzzle type gets released, researchers tackle its42

computational complexity. For example, the following puzzles are all NP-complete: Bag /43

Corral [13], Country Road [20], Fillomino [31], Hashiwokakero [8], Heyawake [19], Hiroimono44
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/ Goishi Hiroi [7], Hitori [17, Section 9.2], Kakuro / Cross Sum [32], Kurodoko [22], Light Up45

/ Akari [25], LITS [26], Masyu / Pearl [14], Nonogram / Paint By Numbers [30], Numberlink46

[23, 2], Nurikabe [24, 18], Shakashaka [12, 3], Slitherlink [32, 31, 1], Spiral Galaxies / Tentai47

Show [15], Sudoku [32, 31], Yajilin [20], and Yosenabe [21].48

Allen et al. [5] defined the Nikoli gap to be the amount of time between the first49

publication of a Nikoli puzzle and a hardness result for that puzzle type. They observed that,50

while early Nikoli puzzles have a gap of 10–20 years, puzzles released within the past ten51

years tend to have a gap of < 5 years.52

In this paper, we prove NP-completeness of a Nikoli puzzle first published in 200453

[27] (according to [28]), establishing a Nikoli gap of 16 years.1 Specifically, we prove NP-54

completeness of the Nikoli puzzle Tatamibari (タタミバリ), named after Japanese tatami55

mats. A Tatamibari puzzle consists of a rectangular m × n grid of unit-square cells, some56

k of which contain one of three different kinds of clues: , , and . (The remaining57

m · n − k cells are empty, i.e., contain no clue.) A solution to such a puzzle is a set of k58

grid-aligned rectangles satisfying the following constraints:59

1. The rectangles are disjoint.60

2. The rectangles together cover all cells of the puzzle.61

3. Each rectangle contains exactly one symbol in it.62

4. The rectangle containing a (“square”) symbol is a square, i.e., has equal width63

(horizontal dimension) and height (vertical dimension).64

5. The rectangle containing a (“horizontal”) symbol has greater width than height.65

6. The rectangle containing a (“vertical”) symbol has greater height than width.66

7. No four rectangles share the same corner (four-corner constraint).67

To prove our hardness result, we first introduce in Section 2 a general “gadget area68

hardness framework” for arguing about (assemblies of) local gadgets whose logical behavior is69

characterized by area coverage. Then we apply this framework to prove Tatamibari NP-hard70

in Section 3. In Appendix A, we show that our framework applies to at least one existing71

NP-hardness proof, for the Nikoli puzzle Spiral Galaxies [15].72

We also present in Section 4 a mathematical puzzle font [11] for Tatamibari, consisting of73

26 Tatamibari puzzles whose solutions draw each letter of the alphabet. This font enables74

writing secret messages, such as the one in Figure 1, that can be decoded by solving the75

Tatamibari puzzles. This font complements a similar font for another Nikoli puzzle, Spiral76

Galaxies [6].77

2 Gadget Area Hardness Framework78

Puzzles. The gadget area hardness framework applies to a general puzzle type (e.g.,79

Tatamibari or Spiral Galaxies) that defines puzzle-specific mechanics. In general, a subpuzzle80

is defined by an embedded planar graph, whose finite faces are called cells, together with an81

optional clue (e.g., number or symbol) in each cell. The puzzle type defines which subpuzzles82

are valid puzzles, in particular, which clue types and planar graphs are permitted, as well83

as any additional properties guaranteed by a hardness reduction producing the puzzles.84

We will use the unrestricted notion of subpuzzles to define gadgets. Define an area of a85

puzzle to be a connected set of cells. An instance of a subpuzzle in a puzzle is an area of86

1 While this gap may be caused by the puzzle being difficult to prove hard or simply overlooked (or both),
we can confirm that it took us nearly six years to write this paper.
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Figure 1 What do these Tatamibari puzzles spell when solved and the dark clues’ rectangles are
filled in? Figure 14 gives a solution.

the puzzle such that the restriction of the puzzle to that area (discarding all cells and clues87

outside the area) is exactly the subpuzzle.88

Solutions. An area assignment (potential solution) for a (sub)puzzle is a mapping from89

clues to areas such that (1) the areas disjointly partition the cells of the (sub)puzzle, and90

(2) each area contains the cell with the corresponding clue. The puzzle type defines when an91

area assignment is an actual solution to a puzzle or a local solution to a subpuzzle.92

Gadgets. A gadget is a subpuzzle plus a partition of its entire area (all of its cells) into93

one mandatory area and two or more optional areas, where all clues are in the mandatory94

area. A hardness reduction using this framework should compose puzzles from instances of95

gadgets that overlap only in optional areas, and provide a filling algorithm that defines96

which clues are in the areas exterior to all gadgets. Each gadget thus defines the entire set of97

clues of the puzzle within the gadget’s (mandatory) area.98

For a given gadget, a gadget area assignment is an area assignment for the subpuzzle99

that satisfies three additional properties:100

1. the assigned areas cover the gadget’s mandatory area;101

2. every optional area is either fully covered or fully uncovered by assigned areas; and102

3. every assigned area lies within the gadget’s entire area.103

A gadget solution is a gadget area assignment that is a local solution as defined by the104

puzzle type.105

Profiles. A profile of a gadget is a subset of the gadget’s entire area. A profile is proper106

if it satisfies two additional properties:107

1. the profile contains the mandatory area of the gadget; and108

2. every optional area of the gadget is either fully contained or disjoint from the profile.109

Every gadget area assignment induces a proper profile, namely, the union of the assigned110

areas.111

A profile is locally solvable if there is a gadget solution with that profile. A profile112

is locally impossible if, in any puzzle containing an instance of the gadget, there is no113

solution to the entire puzzle such that the union of the areas assigned to the clues of the114

gadget instance is that profile. These notions might not be negations of each other because115

of differences between local solutions of a subpuzzle and solutions of a puzzle.116

Each gadget is characterized by a profile table (like a truth table) that lists all profiles117

that are locally solvable, and for each such profile, gives a gadget solution. A profile table is118

proper if it contains only proper profiles. A profile table is complete if every profile not119
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in the table is locally impossible. A hardness reduction using this framework should prove120

that the profile table of each gadget is proper and complete, in particular, that any improper121

profile is locally impossible.122

Given a puzzle containing some gadget instances, a profile assignment specifies a123

profile for each gadget such that the profiles are pairwise disjoint and the union of the profiles124

covers the union of the entire areas of the gadgets. In particular, such an assignment decides125

which overlapping optional areas are covered by which gadgets. A profile assignment is valid126

if every gadget is locally solvable with its assigned profile, i.e., every assigned profile is in the127

profile table of the corresponding gadget.128

A hardness reduction using this framework should prove that every valid profile assignment129

can be extended to a solution of the entire puzzle by giving a composition algorithm for130

composing local solutions from the profile tables of the gadgets, possibly modifying these131

local solutions to be globally consistent, and extending these solutions to assign areas to132

clues from the filling algorithm (exterior to all gadgets).133

3 Tatamibari is NP-hard134

In this section, we prove Tatamibari NP-hard by a reduction from planar rectilinear monotone135

3SAT. In Section 3.1 we briefly discuss a more constrained (but still NP-hard) variant of the136

classic 3SAT problem from which we will make our reduction; in Section 3.2, Section 3.3,137

and Section 3.4, we describe the gadgets (wires, variables, and clauses) from which we build138

the reduction; in Section 3.5, we discuss how the spaces between the gadgets are filled; and139

in Section 3.6 we use everything to show the main result.140

3.1 Reduction Overview141

We reduce from planar rectilinear monotone 3SAT, proved NP-hard in [9]. An instance of142

planar rectilinear monotone 3SAT comes with a planar rectilinear drawing of the clause-143

variable graph in which each variable is a horizontal segment on the x-axis and each clause144

is a horizontal segment above or below the axis, with rectilinear edges connecting variables145

to the clauses in which they appear. Each clause contains only positive or negative literals146

(i.e., is monotone); clauses containing positive (negative) literals appear above (below) the147

variables. We can always lengthen the variable and clause segments to remove bends in the148

edges, so we assume the edges are vertical line segments. We can further assume that each149

clause consists of exactly three (not necessarily distinct) literals: if a clause has k < 3 literals,150

we can just duplicate one of the clauses 3 − k times, which is easy to do while preserving the151

tri-legged rectilinear layout.152

We create and arrange our gadgets directly following the drawing, possibly after scaling153

it up; see Figure 2. Edges between variables and clauses are represented by wire gadgets that154

communicate a truth value in the parity of their covering. For each variable, we create a155

variable gadget, which is essentially a block of wires forced to have the same value, and place156

it to fill the variable’s line segment in the drawing. For each clause, we create a clause gadget157

with three wire connection points and place it to fill the clause’s line segment. Negative158

clauses and wires representing negative literals are mirrored vertically. Both the variable159

and clause gadgets can telescope to any width to match the drawing; unused wires from160

the variable gadgets are terminated at a terminator. By our assumption that the edges are161

vertical segments, we do not need a turn gadget.162

Covering a clause gadget without double-covering or committing a four-corner violation163

requires at least one of its attached wires to be covered with the satisfying parity (the true164
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clause wirevariable filler
Figure 2 The overall layout of the Tatamibari puzzles produced by our reduction follows the

input planar rectilinear monotone 3SAT instance. Clause, variable, and wire gadgets are represented
by purple, green, and red rectangles. Not drawn are terminator gadgets at the base of all unused
copies of variables. Grey rectangles correspond to individual filler clues. Figure inspired by [9,
Figure 2].

parity for positive clauses and the false parity for negative clauses).165

To ensure clues in one gadget do not interfere with other gadgets, the wire gadget is166

surrounded on its left and right sides by sheathing of clue rectangles and the clause gadget167

is surrounded on three sides by a line of clues forced to form 1 × 1 rectangles. Wire168

sheathing also ensures neighboring wires do not constrain each other, except in variable169

gadgets where the sheathing is deliberately punctured.170

In our construction, gadgets will not overlap in their mandatory areas, so in the intended171

solutions, the mandatory area will be fully covered by rectangles satisfying the gadget’s clues.172

Also in our construction, every optional area will belong to exactly two gadgets, and in the173

intended solutions, such an area will be covered by clues in exactly one of those gadgets.174

To apply the gadget area hardness framework, we define a local solution of a subpuzzle175

to be a disjoint set of rectangles satisfying the gadget’s clues and the property that no four176

of these rectangles share a corner. (At the boundary of the subpuzzle, there is no constraint.)177

Our composition algorithm will combine these local solutions by staggering rectangles to178

avoid four-corner violations on the boundary of and exterior to gadgets. We will prove that179

valid profile assignments correspond one-to-one to satisfying truth assignments of the 3SAT180

instance.181

We developed our gadgets using a Tatamibari solver based on the SMT solver Z3 [10].182

The solver and machine-readable gadget diagrams are available [4]. Unfortunately, the solver183

can only verify the correctness of constant-size instances of the gadgets, but the variable and184

clause gadgets must telescope to arbitrary width. Thus we still need to give manual proofs185

of correctness.186

3.2 Wire Gadgets and Terminators187

The wire gadget, shown in Figure 3, consists of a column of clues surrounded by clues188

which encodes a truth value in the parity of whether the squares are oriented with the189
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(a) An unsolved wire gadget. Mandatory area
is purple and optional areas are brown.

(b) Wire communicating
false

(c) Wire communicating
true

Figure 3 Wire gadget and its profile table. The wire can be extended to arbitrary height by
repeating rows. Note that between figures (b) and (c), the clues stay in the same place (and the
rectangles shift to represent the different values of the wire).

(a) An unsolved terminator gadget. Mandatory
area is purple and optional area is brown.

(b) Terminating a false
wire

(c) Terminating a true
wire

Figure 4 Terminator gadget and its profile table.

clues in their upper left or lower left corners. We will call this the wire parity or wire value.190

In this construction, only vertical wires are needed, and thus we do not give a turn gadget or191

horizontal wire. We call the column containing the clues and the empty column next to192

it the inner wire. The inner wire is covered by columns of alternating clues, called the193

(inner) sheathing. In the overall reduction, clues in columns just outside the wire at its194

ends (in the variable gadget and either the clause or terminator gadget) add a further layer195

of sheathing (called the outer sheathing) outside the wire gadget, ensuring neighboring wires196

do not constrain each other.197

The following lemmas will show that the clues in the wire must be covered by 2 × 2198

squares, the squares must all have the same parity, and the wire does not impart any199

significant constraints onto the surrounding region. These lemmas assume that no rectangle200

from a clue can reach the cells to the right of the top and bottom clues in the wire, a201

property which we call safe placement. We discharge this assumption in Section 3.5 by202

showing all wire gadgets produced by our reduction are safely placed.203

I Lemma 3.1. Each in a safely placed wire covers a 2 × 2 square in the wire.204
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Proof. There is no 3 × 3 square in the wire that contains a clue but does not contain any205

other clue. Thus we cannot cover the clue by squares larger than 2 × 2.206

Now suppose we cover a clue by a 1 × 1 square. Now the cells immediately above and207

below this clue must be covered. The clues must be taller than they are long, so they208

cannot cover these cells. Thus we must cover them by squares containing the clues above209

and below. This leaves the cell directly to the right of the 1 × 1 uncovered. It is easy to see210

that this cannot be covered by the nearby clues or clues. The cells next to the top and211

bottom clues cannot be covered by a clue from outside the gadget by our assumption that212

the wire is safely placed.213

The only remaining possibility is a clue from outside the gadget extending into the214

wire gadget. Such a rectangle cannot extend entirely through the wire because the clues215

in the sheathing and the clues inside the wire are in alternating rows. If the external216

horizontal rectangle enters the wire from the right and covers a cell next to the clue,217

that clue is forced to be a 1 × 1 rectangle and the cell above it must be covered by the218

next clue above. This results in a four-corner violation involving the two clues and219

the left sheathing except when the clue is at the bottom of the wire. In that case, the220

external horizontal rectangle blocks the bottom-right sheathing clue, making it 1 × 1 and221

unsatisfied. J222

I Corollary 3.2. Satisfied safely placed wires must have all of their 2 × 2 squares with the223

clues in the lower left corner or all in the upper left corner.224

Proof. By Lemma 3.1 all clues must be covered by 2 × 2 squares. To change whether the225

clues are in the lower left or upper left, we will end up leaving a row of two cells between226

clues blank. By the same arguments in Lemma 3.1 these cannot be covered by the nearby227

clues or clues. J228

I Lemma 3.3. The clues making up the inner sheathing of satisfied safely placed wires229

must be covered by 1 × 2 rectangles of opposite parity to the wire’s squares.230

Proof. By Corollary 3.2 the wire has one of two parities of squares. If a vertical rectangle231

ends with the same y coordinate as an adjacent square, then we will have three right angles232

at a single corner, forcing a four-corner violation or uncovered cell. Because the squares are233

2 × 2, a vertical rectangle of odd height guarantees one of the ends will share a y-coordinate234

with one of the squares. The clues occur every other cell, so the vertical rectangles cannot235

be of length greater than 3. This forces them to be of length 2 and staggered with respect to236

the squares. J237

I Theorem 3.4. The safely placed wire gadget’s profile table is proper and complete.238

Proof. By Lemma 3.1, each optional area must be fully covered or fully uncovered by the239

neighboring clue, so the profile table is proper. Corollary 3.2 fixes the clue parity and240

Lemma 3.3 fixes the sheathing parity, so all other profiles are locally impossible, so the profile241

table is complete. J242

We also have a terminator gadget to terminate unused wires regardless of their parity.243

The terminator gadget is shown in Figure 4.244

I Lemma 3.5. The terminator does not constrain the wire parity.245

Proof. Figures 4b and 4c show solutions of the terminator with both parities. The same246

arguments about wire correctness show this gadget does not allow any additional wire247

solutions nor constrain other gadgets. J248
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1:8 Tatamibari is NP-complete

I Theorem 3.6. The terminator gadget’s profile table is proper and complete.249

Proof. The profile table in Figure 4 contains only proper profiles, so the profile table is250

proper. By the same arguments in Lemma 3.1, the two local solutions shown are the only251

way to cover the wire part of the gadget. A horizontal rectangle from a outside the gadget252

could cover part of the top row of the gadget (or the entire top row when terminating a true253

wire) while leaving the clues in the gadget satisfied and covering the remaining area. We254

prevent this through the global layout: all clause gadgets (the only gadget containing255

clues) appear strictly above (for positive clauses) or strictly below (for negative clauses) all256

terminator gadgets, so it is not possible for any rectangles to cover area in the clause257

gadget. Thus all other profiles are locally impossible, so the profile table is complete. J258

3.3 Variable Gadgets259

The variable gadget is essentially a series of wires placed next to each other with devices we260

call couplers in between. Each coupler acts essentially as an “equality” constraint between261

neighboring wires, thus forcing all the wires connected via a series of couplers to represent262

the same variable; this collection of wires then forms the variable gadget of the reduction.263

Each coupler takes two columns, and consists of (i) a clue which interacts with the264

inner sheathing of the wires to force equality, and (ii) eight clues (two above and two265

below the clue on each column), which prevent the inner sheathings of the neighboring266

wires from constraining each other (except through the clue itself). See Figure 7 for an267

example with two wires; additional wires can be added to either side of variable by using268

more couplers (see Figure 6).269

First, notice that both wires are constrained to have their squares in one of two parities270

by the inner sheathing, as in Corollary 3.2. It is also important that wires do not constrain271

each other outside the couplers, either directly (if they happen to be adjacent) or indirectly272

(through the space in between); we address this in Section 3.5.273

Now we have to show that two wires separated by the coupler must be in the same274

configuration. This happens because the wire parity forces the parity of the inner sheathing,275

which forces the parity of the coupler, which then forces the partiy of the inner sheathing276

and the wire parity of the next wire over.277

I Lemma 3.7. The coupler has only two valid coverings of its clue.278

Proof. The location of the eight clues around the clue ensure that it cannot be larger279

than 2 × 2. By Corollary 3.2 we know that the wire gadgets next to the coupler must have280

their inner sheathing as 2 × 1 rectangles in either the up or down position. If the clue is281

covered by a 1 × 1 it will create a four-corner violation with the inner sheathing. Thus it282

must be one of the two possible positions for a 2 × 2 square. If both inner sheathings have283

the same parity, as in Figure 7 then the constraints can be locally satisfied. J284

I Lemma 3.8. All wires in a variable gadget must have the same value (i.e. upwards285

branches must have the same orientation).286

Proof. We know the coupler has at most two ways to satisfy its constraints, corresponding287

to a 2 × 2 square in either the up or down position. Notice that the inner sheathing of both288

wires must be of different parity from the square or they will cause a four-corner violation.289

Thus the inner sheathing must have the same parity, ensuring that the wires themselves290

must have the same parity. If multiple wires are all connected by couplers, then they will all291

be forced to have the same parity by the same local argument. J292
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Figure 5 The variable gadget. Mandatory
area is purple and optional areas are brown.

Figure 6 A variable gadget widened to provide
three wires, shown here set to true.

I Lemma 3.9. The variable gadget is locally solvable with a given profile if and only if293

the profile satisfies (i) all upwards branches have the same orientation, (ii) all downwards294

branches have the same orientation, and (iii) upwards and downwards branches have opposite295

orientations from each other.296

Proof. The “only if” direction follows from Lemma 3.8 and Corollary 3.2 (each wire indi-297

vidually must have opposite orientation for upwards and downwards branches due to the298

couplers, and all wires in the gadget must have the same upward orientation).299

The “if” direction follows from Lemma 3.5, the individual solvability of each wire and300

terminator in both orientations (as shown in Figure 3b, Figure 3c, Figure 4b, and Figure 4c),301

and the solvability of the couplers given that adjacent wires have the same orientation302

(Figure 7). Neighboring wires (within the variable gadget) do not conflict with each other303

(outside of the coupler) because of the “outer sheathing” columns separating them; the304

meeting points of the two clues in each “outer sheathing” column can be adjusted to avoid305

four-corner violations with each other, as well as avoiding four-corner violations with the306

neighboring “inner sheathing”. J307

Note that this lemma is what we want from a variable gadget: it is locally solvable if and308

only if its profile corresponds to a specific value for the variable it represents.309

3.4 Clause Gadgets310

The clause gadget, shown in Figure 8, interfaces with three wire gadgets representing the311

three literals of this clause. In the upper-left of the variable gadget is an internal wire, which312

we call the clause verification wire. The only way to cover the top two cells of that wire313

is using the wire’s top clue. This is only possible when at least one of the wires is true,314
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1:10 Tatamibari is NP-complete

Figure 7 The variable gadget’s profile table. Left: variable set to true. Right: variable set to
false.

allowing a variable enforcement line (drawn in figures as a purple horizontal bar) to315

provide a parity shift to the clause verification wire. Otherwise, either those top two cells316

cannot be covered, or some other cell in the clause will not be covered, or there will be a317

four-corner violation.318

The mandatory areas of the clause include all clues and cells shown in Figure 11 and319

optional areas consisting of the row of cells at the bottom of the gadget, specifically the set320

of cells under the clue lines at the bottom of the gadget.321

Each of the three wires in this gadget has two intended solutions: true or false. In322

Figure 11, the wire is blue if it represents true and red if it represents false. The leftmost wire323

behaves somewhat differently from the others because it is closest to the clause verification324

wire.325

Importantly, the clause gadget can be expanded horizontally such that the variable wires326

can be spaced an arbitrary amount beyond the width of the base gadget shown in Figure 11.327

The columns between the literal wires in the clause gadget can be expanded an arbitrary328

number of columns. Such an example expansion is shown in Figure 9. In this example, the329

columns have been expanded such that the entire gadget is wider by 4 columns and the330

number of columns between each literal in the gadget has been expanded by 2 columns.331

I Lemma 3.10. If any wire is in the false configuration, then the variable enforcement line332

corresponding to the wire will not be able to go across the gadget.333

Proof. If a wire is in the false configuration, then there exists at two cells on the top of the334

wire that need to be covered. These two cells can be covered in two different ways. We first335

prove this lemma for the leftmost wire and then prove the lemma for the other wires since336

the leftmost wire is different from the others. In this case, the only way to cover the two cells337

is with a 2 × 2 square (see Figure 10), blocking the variable enforcement line from crossing338
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Figure 8 An unsolved clause gadget. Mandatory area is purple and optional areas are brown.

︸ ︷︷ ︸
repeatable

︸ ︷︷ ︸
repeatable

Figure 9 Example where the columns in between literal wires in the clause gadget have been
expanded. The columns which are able to be repeated an arbitrarily number of times have been
labeled as “repeatable” in the figure since they can be repeated an arbitrarily number of times to
make the clause an arbitrary width.
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1:12 Tatamibari is NP-complete

Figure 10 When the leftmost wire is set in the false configuration, the only way to cover the top
two cells of the wire is with a 2× 2 square that blocks the variable enforcement line.

the top of the wire.339

For the other two wires, the top two cells can be covered in only two ways. Either a 1 × 1340

square covers one of the two cells and a vertical line from the top covers the other cell or341

vice versa (see Figure 11).342

No other configurations are available that does not violate the four-corner constraint.343

Thus, this configuration prevents the corresponding variable enforcement lines from going344

across the gadget. J345

I Corollary 3.11. When all wires in the gadget are false, the puzzle does not have a solution.346

Proof. By Lemma 3.10, no variable enforcement line can go across the gadget if all wires347

are false. In order to solve the puzzle presented by the gadget, the top two cells of the clause348

verification line must be covered. These two cells cannot be covered by the horizontal line on349

top of them nor can they be covered by the vertical lines beside them. Thus, they must be350

covered by the 2 × 2 square formed in the clause verification line. However such a square351

will either leave a cell in the middle of the clause verification line uncovered or will leave the352

bottom two cells of the line uncovered. In this case, no configurations exist in covering these353

bottom two cells without violating the four-corner rule. See Figure 11a. Thus, the gadget is354

unsatisfiable if all wires into the gadget are false. J355

I Lemma 3.12. If at least one of the wires entering the clause gadget is in the true356

configuration, then the clause gadget is locally solvable.357

Proof. In any wire is in the true configuration, then the variable enforcement line corre-358

sponding to the gadget will be able to go across the gadget. For the leftmost wire, the clause359

verification line will be in the configuration that ensures that all cells that need to be covered360



A. Adler, J. Bosboom, E.D. Demaine, M. L. Demaine, Q. C. Liu, and J. Lynch 1:13

by the line are covered. Otherwise, the variable enforcement line will be able to cause the361

clause verification line to cover all the necessary cells. See Figures 11b to 11h. J362

Using the above lemmas, we are able to prove the following properties of the profile table363

of the clause gadget.364

I Corollary 3.13. The profile table of the clause gadget is proper.365

I Lemma 3.14. The profile table of the clause gadget is complete.366

Proof. The clause gadget’s profile table contains all profiles shown in Figure 11 except for367

the all-false configuration shown in Figure 11a. By Corollary 3.11, the all-false configuration368

is not locally solvable. It remains to show the all-false configuration is locally impossible.369

To do this, we show that no solution to a clue outside of this profile is able to solve any370

part of the all-false clause profile–essentially that the clause gadget is fully isolated from the371

rest of the puzzle. By design, no clue above, to the left of, or to the right of the clause can372

cover any of the cells that are left uncovered by the literals, because the row and columns of373

single-cell squares blocks any rectangles from reaching the uncovered cells.374

We now prove that no clues from the bottom of the gadget can help cover any of these375

cells. Such clues can only potentially cover the optional areas at the bottom of the gadget.376

We show that such clues cannot cover parts of the literal gadgets. By Lemma 3.7, there are377

only two possible configurations of the variable gadgets; thus, no other outside fillers can378

cover any cells in the incoming wires. Hence, no clues adjacent to the bottom of the gadget379

can help cover any part of the incoming wires.380

Thus the all-false profile is locally impossible, so the profile table is complete. J381

3.5 Layout, Sheathing, and Filler382

In order to build the full Tatamibari instance corresponding to a planar rectilinear monotone383

3SAT instance, we lay out the gadgets as shown in Figure 2: variable gadgets are positioned on384

a central line, while positive and negative clauses are positioned above and below respectively385

at heights corresponding with how many layers of clauses are nested below them, with wires386

running vertically from variables to clauses (both variable and clause gadgets can be extended387

arbitrarily far horizontally). Variable and clause gadgets have rectangular profiles (except388

for where the wires “plug in” to them). Variables and clauses have a uniform height, and for389

any two variable or clause gadgets, they are placed on exactly the same set of rows or they390

share no rows.391

All wire gadgets in the puzzle produced by our reduction are safely placed; that is, no392

rectangle from a clue can reach the cells to the right of the top and bottom clues in393

the wire. The only clues in those columns are in clause gadgets. The row of single-cell394

squares at the top of the clause gadget blocks any rectangles from extending upwards out of395

the clause gadget. If a rectangle from a clue in those columns of the clause gadget extends396

downward past the first clue in the column to its left, the cell below that clue cannot397

be covered by any clue, so rectangles cannot extend downward out of the clause gadget in398

those columns. Thus clues from clause gadgets cannot interact with wire gadgets, so the399

wires are safely placed.400

Because we want the solvability of the Tatamibari instance to depend only on solving401

the gadgets, we need to add filler clues that are always able to cover the areas outside the402

gadgets.403
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(a) The (false, false, false) configuration. (b) The (false, false, true) configuration.

(c) The (false, true, false) configuration. (d) The (false, true, true) configuration.

(e) The (true, false, false) configuration. (f) The (true, false, true) configuration.

(g) The (true, true, false) configuration. (h) The (true, true, true) configuration.

Figure 11 The clause gadget. All configurations shown here except the all-false configuration in
Figure 11a are in the clause gadget profile table. Clues highlighted in yellow also function as the
“outer sheathing” protecting the wires closest to them (see Section 3.5). For the false wires, the only
configuration that guarantees the two cells at the top are covered are the cases where one 1 × 1
square covers one (shown in brown) and a long rectangle extending from the top covers the other.

First, we set aside any cells horizontally adjacent to a wire gadget. These cells will be404

covered by the outer sheathing clues described in described in Section 3.2 and Section 3.3 and405

highlighted in yellow in Figure 9 and Figure 11. In the global solution, the areas assigned to406
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the outer sheathing clues thus extend vertically outside their gadget. For the purposes of the407

filler algorithm, we consider the cells covered by the outer sheathing to be part of the wire408

gadget.409

Each filler clue corresponds to a rectangular area of space between gadgets, formed by410

breaking each row into maximal horizontally contiguous strips between (and bordered by)411

the gadgets, then joining vertically contiguous strips into a single rectangle if they have the412

same width. The filler algorithm places a single clue in each of these rectangles ( , , or413

depending on the rectangle’s aspect ratio), placed arbitrarily inside (say, in the upper-right414

corner). See Figure 2 for an example. While it may be possible for the solver to use these415

clues differently than shown here, we only need to prove that if the solver does assign each416

rectangular area to its associated clue, it will cover the area.417

The only potential problem lies in the possibility of a four-corner violation involving a418

filler rectangle. This can only happen where either (i) a corner of a filler rectangle meets419

a gadget and a wire coming from that gadget, or (ii) where two corners of filler rectangles420

meet along the edge of a gadget. If a corner of a filler section meets an edge of another filler421

section or the edge of the board there cannot be a four-corner violation.422

Remark: There is a potential third problem case, where two wires are directly adjacent with423

only the outer sheathing (2 columns) between them (see Figure 8, which has this property).424

This can be dealt with in either of two ways: ensuring that no wires are directly adjacent425

to each other by stretching the instance horizontally, or noting that the meeting points of426

the outer sheathing of the two adjacent wires can be adjusted to not produce a four-corner427

violation between them.428

I Proposition 3.15. If the gadgets can all be satisfied, the filler clues can also be satisfied.429

Proof. Each filler clue will be satisfied by a rectangle covering its entire associated area; the430

cells horizontally adjacent to wires will be filled by two width-1 vertical rectangles from the431

outer sheathing clues, one coming from the clause gadget above and the other coming from432

the variable gadget below. The meeting point between the two outer sheathing rectangles433

can be adjusted as needed to avoid a four-corner violation. As mentioned, we have only two434

problem cases: (i) a corner of the filler rectangle meets a gadget and protruding wire; and435

(ii) corners of two sections meet on the side of a wire. Because both cases involve the side of436

a wire, we can avoid violations in either case by appropriately adjusting the meeting point of437

the sheathing clues.438

(i) To avoid having a corner where the corner of the filler section meets the wire and439

gadget, the meeting point of the two sheathing clues can be placed on the edge (not corner)440

of the filler section, thus avoiding a four-corner violation since the corner of the filler section441

meets the edge of one of the sheathing rectangles.442

(ii) As long as the meeting point of the two sheathing rectangles of the wire is not at the443

point where the two filler sections meet, there is no four-corner violation. The meeting point444

can trivially be placed on the side of a filler section (while still respecting the parity of the445

wire as expressed by the inner sheathing).446

Therefore, since the sheathing can always be adjusted to accommodate filler rectangles,447

the satisfiability of the Tatamibari instance depends only on the gadgets. J448

3.6 Finale449

Now we can show that Tatamibari is NP-hard. Let f be the reduction, which takes an450

instance Φ of planar rectilinear monotone 3SAT and returns a Tatamibari instance f(Φ); we451
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want to show:452

I Proposition 3.16. If Φ has n variables and m clauses, then f(Φ) has size polynomial in453

n + m, and can be computed in time polynomial in n + m.454

Proof. Our construction expands the given planar rectilinear monotone 3SAT instance by455

a constant factor. Therefore it suffices to prove that planar rectilinear monotone 3SAT is456

strongly NP-hard when given the coordinates of the rectilinear drawing. Indeed, the height457

of the drawing is O(m) and the width of the drawing is O(e) if the graph has e edges, which458

is O(m + n) by planarity. J459

I Proposition 3.17. If Φ has a solution, then f(Φ) also has a solution.460

Proof. We begin by taking the solution to Φ and setting the variable gadgets’ profiles461

according to those values; by Lemma 3.9, they will all be locally solvable. By Lemma 3.12,462

since each clause gadget is connected to wires representing variables which satisfy the clause,463

there must be a solution to the clause gadget. Furthermore, by Proposition 3.15, if the464

gadgets are satisfiable then the rest of the space can be filled without contradiction, producing465

a solution to f(Φ). J466

I Proposition 3.18. If Φ has no solution, then f(Φ) also has no solution.467

Proof. We prove the equivalent statement that if f(Φ) has a solution, then Φ must also have468

a solution.469

First, we prove that any solution to f(Φ) must correspond to some setting of the variables470

x1, . . . , xn of Φ. This is a consequence of Lemma 3.8, which shows that all wires in a single471

variable gadget must carry the same value, which is then taken as the setting for that variable.472

Next, we have to show that these settings of the variables xi are a solution of Φ; to do473

this, note that by Corollary 3.2 each wire ending in a clause gadget must carry its value into474

this clause gadget; and by Corollary 3.11 and Lemma 3.12 there is a solution to the clause475

gadget if and only if the wires represent values which satisfy the clause.476

Thus, the values of the variable gadgets must be a solution to Φ. J477

The above three propositions imply our desired result:478

I Theorem 3.19. Tatamibari is (strongly) NP-hard.479

Because a given Tatamibari solution can be trivially checked in polynomial time, this theorem480

implies that Tatamibari is NP-complete.481

4 Font482

Figure 12 shows a series of twenty-six 10 × 10 Tatamibari puzzles that we designed, whose483

unique solutions shown in Figure 13 reveal each letter A–Z. To represent a bitmap image in484

the solution of a Tatamibari puzzle, we introduce two colors for clues, light and dark, and485

similarly shade the regions corresponding to each clue. As shown in Figure 13, the letter is486

drawn by the dark regions from dark clues. These puzzles were designed by hand, using our487

SAT-based solver [4] to iterate until we obtained unique solutions. The font is also available488

online.2489

2 http://erikdemaine.org/fonts/tatamibari/

http://erikdemaine.org/fonts/tatamibari/
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Figure 12 Puzzle font: each puzzle has a unique solution whose regions for dark clues (shown in
Figure 13) form the shape of a letter.

5 Open Problems490

There remain interesting open questions regarding the computational complexity of Tatamibari.491

When designing puzzles, it is often desired to have a single unique solution. We suspect that492

Tatamibari is ASP-hard (NP-hard to determine whether it has another solution, given a493

solution), and that counting the number of solutions is #P-hard. However, our reduction494

is far from parsimonious. Some rework of the gadgets, and a unique filler between gadgets,495

would be required to preserve the number of solutions.496
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Figure 13 Solved font: unique solutions to the puzzles in Figure 12.

Figure 14 Solution to Figure 1.
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(a) Unsolved wire gadget (b) Wire carrying true
signal: 3× 2 rectangles

(c) Wire carrying false
signal: alternating 1× 2 and

5× 2 rectangles

Figure 15 Spiral Galaxies wire and its profile table (true and false solutions)

We could ask about restrictions or natural variations of Tatamibari. For example, we497

are curious whether a Tatamibari puzzle with only clues, or only clues, remains hard.498

We have also wondered about the version of the puzzle without the four-corner constraint.499

Although initially we thought of the four-corner constraint as a nuisance to be overcome in500

our reduction, our final proof uses it extensively and centrally.501

A Example: Spiral Galaxies502

As an example of the gadget area hardness framework, we show how the NP-hardness proof503

for Spiral Galaxies from [15] can be described using the framework. A Spiral Galaxies puzzle504

is a rectangular grid with clues in some grid cells or on some grid lines. The goal is to505

partition the puzzle into areas with a single clue per area such that the area is rotationally506

symmetric about the clue.507

We reduce from planar3 Boolean circuit satisfiability. We have a wire gadget, a variable508

gadget, NOT and AND gadgets, a fanout (wire duplicator) gadget, and a vertical shift gadget.509

We lay out these gadgets to overlap in their optional areas (only), and communicate a truth510

value in whether the optional area is covered or not.511

Wire. The wire gadget consists of repeating pairs of clues three grid units apart. There512

are two gadget solutions, shown in Figure 15: repeating 3 × 2 rectangles, in which case the513

wire covers the right optional area, and alternating 1 × 2 and 5 × 2 rectangles, in which514

case the wire covers the left optional area. The wire carries a true signal when it covers the515

right optional area and false when it covers the left optional area. The wire gadget can be516

extended to arbitrary length in units of two clues. (The proof in [15] does not explicitly517

state this parity requirement, but the gate gadgets assume the true signal protrudes into the518

gadget to cover the optional input area and the false signal does not.)519

Boolean circuit satisfiability requires the circuit produce a true output. We can force a520

wire to be true simply by terminating it. Because the wire has height two, any filler clues to521

the right of the wire cannot cover area in the wire gadget, so the wire must end in a 3 × 2522

rectangle to cover the right optional area, forcing the rest of the wire to also carry a true523

signal.524

Variable. The variable gadget is shown in Figure 16. There are two gadget solutions, one525

leaving the optional area uncovered (so the adjacent wire is set to true) and the other covering526

it (so the adjacent wire is set to false). Choosing one solution or the other corresponds to527

assigning true or false to the variable.528

3 Friedman’s proof [15] provides a crossover gadget, but it is not necessary because AND and NOT build
a crossover [16].
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(a) Unsolved
variable gadget

(b) Variable set to
true

(c) Variable set to
false

Figure 16 Spiral Galaxies variable and its profile table (true and false solutions)

(a) Unsolved
NOT gadget

(b) NOT
gadget

converting
true to false

(c) NOT
gadget

converting
false to true

Figure 17 Spiral Galaxies NOT gadget and its profile table

NOT. The NOT gadget is shown in Figure 17. If the left optional area is covered by the529

input wire (carrying a true signal), the clue in the NOT gadget must cover a 1 × 2 rectangle,530

so the right optional area must be covered by the output wire carrying a false signal. If the531

left optional area is uncovered (when the input wire is false), the clue in the NOT gadget532

covers both optional areas, so the output wire must carry a true signal. Thus the NOT533

gadget inverts the wire’s signal.534

(a) Unsolved AND gadget
(inputs at left)

(b) AND with true and
true inputs

(c) AND with true and
false inputs

(d) AND with false and
true inputs

(e) AND with false and
false inputs

Figure 18 Spiral Galaxies AND gadget and its profile table
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(a) Unsolved fanout
gadget (input at top)

(b) Fanout gadget
duplicating true wire

(c) Fanout gadget
duplicating false wire

Figure 19 Spiral Galaxies fanout gadget and its profile table

(a) Unsolved shift
gadget

(b) Shift gadget
shifting a true wire

(c) Shift gadget
shifting a false wire

Figure 20 Spiral Galaxies upward shift gadget and its profile table; the downward shift gadget is
this gadget flipped vertically

AND. The AND gadget is shown in Figure 18. When both inputs are true, both of the535

left optional areas are covered by the wire, so the clues to the right of the optional area are536

rectangles and the clue at the center of the gadget is a long vertical rectangle, allowing the537

right optional area to be covered, propagating a true signal from the gadget. When either or538

both of the inputs are false, one or both of the left optional areas must be covered by the539

clue(s) to the right of the areas, blocking the central clue from covering a vertical rectangle,540

preventing the right optional area from being covered, thus propagating a false signal from541

the gadget.542

Fanout. Like the AND gadget, the fanout gadget (Figure 19) is also based around forming543

or not forming a vertical rectangle. The upper optional area is the input. When it is covered544

by the input wire (a true signal), the central clue cannot form a vertical rectangle, so the545

upper-right optional area must be covered by the clue to its left, and because the bottom cell546

in the central column is covered by the clue to its upper-left, the lower-right optional area547

must also be covered by the clue to its left. When the upper optional area is not covered by548

the input wire, it must be covered by the central clue forming a vertical rectangle, so the549

output optional areas cannot be covered by the clues to their left.550

Shift. Because variable and gate outputs are on the right and gate inputs are on the left,551

we do not need a turn gadget, but we do need to shift wires vertically, which is done using552

the shift gadget. An upward shift gadget is shown in Figure 20; the downward shift gadget553

is that gadget’s reflection across the horizontal axis. When the input wire is true, the input554

wire covers the left optional area, so the left clue is covered by a single cell and the right clue555

covers the right optional area, propagating true on the output. When the input wire is false,556

the left clue covers the left optional area and forces the right clue to be a 1 × 2 rectangle,557

leaving the right optional area uncovered, propagating false on the output.558
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Layout. Friedman’s proof in [15] omits discussion of layout, but we sketch a layout algorithm559

here. We start with a grid embedding of the input planar Boolean circuit. We scale the grid560

by at least 6 so that our wire gadget fits for unit-length wires, but possibly by a greater561

factor if the grid embedding has long vertical segments, because our shift gadget consumes562

horizontal distance to move vertically.563

Filling algorithm. The filling algorithm places a clue in the center of every cell that isn’t564

part of a gadget, forcing them to be covered by single-cell areas. Filler clues could only cover565

area in a gadget if two cells in the gadget area are separated by one filler clue and those cells566

do not themselves have clues. This is avoided in all gadgets by ensuring all gadget cells that567

are separated by filler are separated by two or more filler cells, so only local gadget solutions568

are possible.569

Composition algorithm. The local gadget solutions are already consistent with each other,570

so to form an area assignment for the entire puzzle, the composition algorithm simply takes571

the local gadget solutions and assigns each filler clue to the cell containing it.572

Proper and complete profile tables. The profile tables are proper because they contain573

only proper profiles. Because the filler clues cannot cover area in the gadgets, we can verify574

by case analysis that the profile tables are complete (all other profiles are locally impossible).575

This completes the proof.576
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