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Abstract22

We study the space reachable by rolling a 3D convex polyhedron on a 2D periodic tessellation in23

the xy-plane, where at every step a face of the polyhedron must coincide exactly with a tile of the24

tessellation it rests upon, and the polyhedron rotates around one of the incident edges of that face25

until the neighboring face hits the xy plane. If the whole plane can be reached by a sequence of such26

rolls, we call the polyhedron a plane roller for the given tessellation. We further classify polyhedra27

that reach a constant fraction of the plane, an infinite area but vanishing fraction of the plane, or a28

bounded area as hollow-plane rollers, band rollers, and bounded rollers respectively. We present a29

polynomial-time algorithm to determine the set of tiles in a given periodic tessellation reachable by30

a given polyhedron from a given starting position, which in particular determines the roller type31

of the polyhedron and tessellation. Using this algorithm, we compute the reachability for every32

regular-faced convex polyhedron on every regular-tiled (≤ 4)-uniform tessellation.33
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1 Introduction40

Dice rolling puzzles feature a cube rolling around on the square grid. The goal is often to41

match a given face with a given tile. Such puzzles were popularized by Martin Gardner42

[11, 12, 13], and are featured in a variety of computer games, such as Korodice (Gameboy,43
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5:2 Rolling Polyhedra on Tessellations

Figure 1 Screenshot from an interactive 3D rolling visualization program on the subject of this
paper [3].

1990), Super Mario 64 (Nintendo 64, 1996), Devil Dice (Playstation, 1998), Legacy of44

Kain: Soul Reaver (Playstation, 1999), Legend of Zelda Oracle of Ages (Gameboy Color,45

2001), Bombastic (Playstation 2, 2002), Legend of Zelda Spirit Tracks (Nintendo DS, 2009),46

Rubek (Windows, 2016), Roll The Box (Mobile, 2021), and The Last Cube (Windows,47

2022); see Figure 2. Cube rolling puzzles have been occasionally generalized to rolling48

other polyhedra on other grids. For example, computer game HyperRogue (Windows, 2015)49

involves hexagonal and heptagonal tiles in a hyperbolic space, and in its 2021 update, rolling50

tetrahedron, octahedron, or icosahedron dice on a triangular lattice; see Figure 2e. With51

various constraints, rolling puzzles can be NP-complete [6, 18], and when rolling multiple52

shapes, they can be PSPACE-complete [5, 16].53

(a) Korodice (1990) (b) Zelda Oracle of
Ages (2001)

(c) Devil Dice (1998)
[screenshot: thebobble] (d) Rubek (2016) (e) HyperRogue (2015) Dice Reserve update

(2021)

Figure 2 Cube and dice-rolling puzzles in video games.

Previous work has explored rolling a polyhedron to reach any position and orientation in54

the plane [8, 4]. Akiyama [1] defined a frame-stamper as a regular polyhedron that covers the55

whole plane with a tiling by rolling the polyhedron in arbitrary directions, and a tile-maker as56

a polyhedron whose unfoldings all tile the plane. A more relaxed definition in [2] determines57

all tessellation polyhedra — regular-faced convex polyhedra that have at least one unfolding58

that tiles the plane.59
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1.1 Rolling Rollers60

We formalize the concept of rolling any convex 3D polyhedron P on any tessellation T ,61

which we imagine as lying in the (horizontal) xy-plane; refer to Figure 3. Recall that a62

plane tessellation is a partition of the plane into a collection T of polygons called tiles [15].63

We restrict our attention to edge-to-edge tilings where two touching tiles share either a64

whole polygon edge or a vertex. When a tile of T is congruent to a face of P , we call them65

compatible.66

(a) Pyramid with
its net made of
regular polygons.

(b) The snub squares tiling
made of regular triangles and
squares.

(c) Pyramid sitting on a
compatible (congruent) tile
on the tiling.

Figure 3 A polyhedron and a tessellation with compatible faces are required for rolling.

To start, we place the polyhedron P on the tessellation so that one of its faces rests on67

(i.e., coincides exactly with) a compatible tile. In a rolling step, we rotate the polyhedron68

about one of the edges of its resting face, until another face rests on the tessellation. For the69

roll to be valid, we insist that, at the end of the motion, the adjacent face of P across the70

rolling edge rests on another (adjacent) compatible tile. See Figure 4 for an example.71

Figure 4 Valid and invalid rolls, marked by green checks and red Xs respectively.

Valid sequences of rolls form paths in the rolling graph of possible configurations; see72

Section 2.2 for a formal definition. If the rolling graph contains a connected component that73

includes every tile of T , then we call the polyhedron a plane roller (denoted by the icon)74

for that tessellation and starting position, as it can eventually roll to cover the entire plane.75

Other possibilities are hollow-plane rollers, which cover a constant fraction of the plane76

while leaving holes; band rollers, which cover an infinite area that is a vanishing fraction77

of the plane; and bounded rollers, which are confined to a finite area.78

FUN 2022
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1.2 Our Results79

In this paper, we develop a polynomial-time algorithm to identify whether a polyhedron is a80

plane roller, hollow-plane roller, band roller, or bounded roller for a given plane tessellation and81

starting location, provided the tessellation is periodic meaning that its tiles have two linearly82

independent translational symmetries. The running time of our algorithm is polynomial in83

the number of faces of the polyhedron and the number of tiles in the fundamental domain of84

the the two translational symmetries. We essentially take advantage of the periodicity of the85

tessellation, coupled with the structure of the polyhedron, to prove that the resulting rolling86

graph also has a periodic structure that we can exploit.87

We then apply this algorithm to completely categorize a natural finite set of interesting88

special cases, compiled on the website https://akirabaes.com/polyrolly/resulttable/89

shown in Figure 5. For polyhedra, we consider the regular-faced convex polyhedra where every90

face is a regular polygon: the 5 Platonic solids [9], the 13 Archimedean solids [10], the 9291

Johnson solids and their chiral variations [14, 17, 19], the n-prisms for n ∈ {3, 5, 6, 8, 10, 12},92

and the n-antiprisms for n ∈ {4, 5, 6, 8, 10, 12}, as higher-sided polygons cannot be used to93

tile the plane [15]. For periodic plane tessellations, we consider all “k-uniform” tilings for94

k ≥ 4, as listed in [7]. A plane tessellation is k-uniform if its tiles are regular polygons and it95

is k-isogonal, meaning that there are k equivalence classes of vertices (called orbits) formed96

by applying all transformations in the symmetry group to the vertices. All k-uniform tilings97

are periodic [15].98

Figure 5 Screenshot of the rolling-pair reachable-area classification interactive table available at
https://akirabaes.com/polyrolly/resulttable/.

https://akirabaes.com/polyrolly/resulttable/
https://akirabaes.com/polyrolly/resulttable/
https://akirabaes.com/polyrolly/resulttable/
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(a) hexagonal antiprism on (36; 34 . 6)2 (b) J87 on (36; 33 . 42)2

Figure 6 Examples of reachable-area patterns generated by plane rollers which can reach the
entire plane.

(a) snub cube on (32 . 4 . 3 . 4) (b) snub dodecahedron on (36; 34 . 6)2

Figure 7 Examples of reachable area patterns generated by hollow-plane rollers which reach a
constant fraction of the plane while leaving holes.

(a) J90 on (33 . 42; 32 . 4 . 3 . 4)1 (b) snub cube on (33 . 42; 32 . 4 . 3 . 4)2

Figure 8 Examples of reachable areas patterns generated by band rollers which reach an
infinite area but a vanishing fraction of the plane, being restricted to an infinite band.

Including chiral variations of polyhedra that have one, these cases consist of 129 polyhedra99

and 131 tilings. For each case, we tried all possible starting positions to find the largest100

connected reachable area, thereby characterizing every pair of polyhedron and tiling as101

plane roller, hollow-plane roller, band roller, or bounded roller. See Figures 6, 7, 8, and102

9 for examples of each respective type, and Tables 2, 3, and 4 in Appendix A for a condensed103

view of all results.104
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https://en.wikipedia.org/wiki/Hexagonal_antiprism
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J87#Others
https://akirabaes.com/polyrolly/resulttable/t/2u04.png
https://en.wikipedia.org/wiki/Snub_cube
https://akirabaes.com/polyrolly/resulttable/t/1u06.png
https://en.wikipedia.org/wiki/Snub_dodecahedron
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J90#Others
https://akirabaes.com/polyrolly/resulttable/t/2u09.png
https://en.wikipedia.org/wiki/Snub_cube
https://akirabaes.com/polyrolly/resulttable/t/2u10.png
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(a) J44 on (33 . 42; 32 . 4 . 3 . 4)1 (b) J22 on (36; 34 . 6)2

Figure 9 Examples of reachable area patterns generated by bounded rollers which are restricted
to a finite area containing the start.

The figures and tables use standard notation for k-uniform tilings based on vertex types105

[7]. The type of a regular-polygon tile is the number of its sides, and the type of a vertex is106

the clockwise cyclic order of tile types that surround a vertex. For a k-uniform tiling, there107

are finitely many vertex types, so the tiling can be labeled by the list of vertex types, with108

duplicate names differentiated by a subscript. See Figure 10.109

(a) (32 . 4 . 3 . 4)
1-uniform tiling
(archimedean)

(b) (36; 32 . 4 . 3 . 4)
2-uniform tiling

(c) (36; 34 . 6; 3 . 6 . 3 . 6)
3-uniform tiling

Figure 10 Examples of the naming convention of uniform tilings in the standardized “isogonal
vertex type” notation, each point belonging to an orbit describing vertex types around it.

The rest of this paper is organized as follows. Section 2 describes our algorithm. Section 3110

shows how the results from this algorithm can also assist puzzle designers. Section 4 describes111

our implementation.112

2 The Algorithm113

2.1 Tilings114

First we review some basics about tilings, following Grünbaum and Shephard [15].115

There are uncountably infinitely many tilings, even when restricted to edge-to-edge tilings116

with regular polygons. For example, the tiling in Figure 6b can be modified to follow any117

binary sequence of triangle and square rows, and there are uncountably many such binary118

sequences. We restrict our attention to periodic tilings T , which have two linearly independent119

translational symmetries (say, ~a and ~b) that act on the tiles of T . What this means is that120

applying the translation vector ~a (respectively ~b) on any tile t ∈ T produces another tile of T .121

https://en.wikipedia.org/wiki/Johnson_solid?solid=J44#Gyroelongated_bicupolae,_cupola-rotundas,_and_birotundas
https://akirabaes.com/polyrolly/resulttable/t/2u09.png
https://en.wikipedia.org/wiki/Johnson_solid?solid=J22#Elongated_and_gyroelongated_cupolae_and_rotundas
https://akirabaes.com/polyrolly/resulttable/t/2u02.png
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The symmetry group generated by ~a and ~b decomposes the set of tiles of T into equivalence122

classes, also called orbits, where two tiles are in the same class if there is a symmetry in the123

group (an integer linear combination i~a + j~b for some i, j ∈ Z) that matches one to the other.124

The tiling can then be described by a fundamental domain for the action of these125

symmetries. Figure 11 shows an example. The fundamental domain is a connected subset of126

the tiles (one tile for each orbit), which glued together form a supertile S. We denote by |S|127

the number of tiles in the supertile. The supertile (and the tiles that compose it) can be128

repeated by the action of the two translations to obtain the original tiling. As S tiles the129

plane isohedrally by translation, its boundary can be decomposed into six pieces, denoted by130

A, B, C, Ā, B̄, C̄, counterclockwise, where Ā, B̄, and C̄ are translations of A by the action of131

~a, B by the action of ~b, and C by the action of ~b− ~a, respectively. See Figure 16 (right).132

Figure 11 The same tiling as Figure 10b (36; 32 . 4 . 3 . 4) in its supertile tiling representation.

A copy of the supertile can be identified by its integer coordinates in the basis formed by133

the translation vectors ~a and ~b. That is, the copy (i, j) corresponds to the application of the134

translation i~a + j~b to S. An individual tile t of the tiling T can then be uniquely identified135

by 〈(i, j), s〉: the coordinates (i, j) of the copy of S it is located in and its representative tile136

s within S. See Figure 12(a),(c)137

(a) The periodic tiling and
the supertile described on it.

(b) The supertile
graph.

(c) Skewed
coordinates system
over supertiles.

Figure 12 Infinite tiling to supertile multigraph

Figure 13 Tiling where a
multigraph is necessary; see
tiles 3 and 2.

A tiling T can also be represented by its (infinite) dual graph GT ,1 where each tile is138

a vertex of GT , and two vertices are connected by an edge if the two corresponding tiles139

are adjacent. When T is a periodic tiling, it is represented by the dual multigraph GS of140

its supertile S. For tiles touching the boundary of S, we connect them to the tiles to which141

they are adjacent in the other copy or copies of the supertile, and mark the dual edges by142

A,B,C,Ā,B̄, or C̄ depending on the portion of the boundary they cross, see Figure 12(b).143

The graph GS is in fact the quotient of GT by the action of the symmetries ~a and ~b (also144

denoted GT /{~a,~b}). The graph GS can be used to navigate the tiling T or the graph GT by145

updating the representation 〈(i, j), s〉 when moving to an adjacent tile. The tile s is updated146

1 This can be a multigraph, with parallel edges when two tiles are adjacent on more than one edge; see
Figure 13.

FUN 2022
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Figure 14 Dual graph of a
pyramid with information about the
relative orientations of its faces.

× ×

Figure 15 A vertex of the rolling graph is composed of
〈(i, j), (tile, face, orientation)〉

to the adjacent tile s′ in GS , and the coordinates (i, j) need to be updated when crossing a147

boundary of the supertile S, using the edge marks.148

2.2 Rolling Graphs149

Let P be a convex polyhedron in R3. We denote by |P | the number of faces of P . The face150

structure of P can be represented by its dual graph GP where each face of P is a vertex in151

GP and two vertices are connected by an edge if the two corresponding faces of P share an152

edge (Figure 14).153

For a face f ∈ P or a tile t ∈ T , denote by |f | and |t| its number of edges. We number154

the edges of every face f of polyhedron P counter-clockwise starting from one arbitrary edge155

that will serve as the reference edge. We do the same for every tile t of the supertile S (and156

the corresponding tessellation T ), with one edge being the reference edge, and the next edges157

being numbered in clockwise order. A face f ∈ P is compatible with t ∈ T in the orientation158

o if |f | = |t| and the counter-clockwise sequence of edge lengths and angles in f starting159

at edge number o matches exactly the clockwise sequence of edge lengths and angles in t160

starting from the reference edge. This means that f can be placed in the plane with edge161

number o overlapping with the reference edge of t so that the two polygons overlap perfectly.162

We say polyhedron P rests on the tile t in the tessellation T with its face f at orientation163

o if f and t completely overlap and the edge number o of f overlaps the reference edge of t.164

The position of P is then represented by the tuple 〈t, f, o〉. When T is a periodic tiling with165

supertile S, and t = 〈(i, j), s〉 for s ∈ S, then this position can be written as 〈(i, j), s, f, o〉166

(Figure 15). The state associated with this position is the tuple 〈s, f, o〉.167

The rolling graph GP,T for P and T is an infinite graph whose vertex set is the set of all168

possible positions 〈t, f, o〉, and two nodes are connected by an edge if there is a valid roll169

between them. The positions adjacent to 〈t, f, o〉 can be easily explored by using the dual170

graphs of P and T . We write 〈t, f, o〉 ∼ 〈t′, f ′, o′〉 if the two positions are connected by a171

path in the rolling graph. In that case, we say that the two positions are reachable from one172

another.173

2.3 Symmetries of Rolling Graphs174

In this section, we show that any large connected subgraph of the rolling graph GP,T has a175

translational symmetry. We start by bounding the number N of possible states 〈s, f, o〉 of a176

rolling graph.177

N =
∑
s∈S

∑
f∈P

(number of compatible orientations between f and s)178

≤
∑
s∈S

∑
f∈P

|f | ≤ 6|S||P |.179

180
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Figure 16 By finding the symmetry vectors in a connected component, we can describe a compact
representation of the connected component’s periodic graph (over the rolling graph).

The last inequality is by Euler’s formula. Note that the rolling graph in itself has the181

same translational symmetries as the tiling T , because the validity conditions are the same182

in both positions.183

I Fact 1. If 〈(i, j), s0, f0, o0〉 has a valid roll to 〈(i+i1, j+j1), s1, f1, o1〉, then 〈(i′, j′), s0, f0, o0〉184

has a valid roll to 〈(i′ + i0, j′ + j0), s1, f1, o1〉 for all i′, j′ ∈ Z.185

This however does not mean that the same symmetries apply to the connected components186

of the rolling graph, that is, 〈(i, j), s0, f0, o0〉 and 〈(i′, j′), s0, f0, o0〉 might not be reachable,187

even if the connected components are infinite. However, the following lemma shows that if188

two distinct reachable positions have the same state, then we obtain a translational symmetry189

on their connected components in the rolling graph.190

I Lemma 1. If 〈(i, j), s, f, o〉 ∼ 〈(i + u, j + v), s, f, o〉, then for all 〈(i′, j′), s′, f ′, o′〉 ∼191

〈(i, j), s, f, o〉, we have 〈(i′, j′), s′f ′, o′〉 ∼ 〈(i′ + u, j′ + v), s′, f ′, o′〉.192

That is, u~a + v~b defines a translational symmetry on the connected component of193

〈(i, j), s, f, o〉 in the rolling graph.194

Proof. Write the path from 〈(i′, j′), s′, f ′, o′〉 to 〈(i, j), s, f, o〉 in the rolling graph as 〈(i, j), s,195

f, o〉 = 〈(i + i0, j + j0), s0, f0, o0〉, . . . , 〈(i + ik, j + jk), sk, fk, ok〉 = 〈(i′, j′), s′, f ′, o′〉. Since, by196

Fact 1, 〈(i+u+i`, j +u+j`), s`, f`, o`〉 to 〈(i+u+i`+1, j +u+j`+1), s`+1, f`+1, o`+1〉 is a valid197

roll, we can construct the path 〈(i′, j′), s′, f ′, o′〉 = 〈(i + ik, j + jk), sk, fk, ok〉, . . . , 〈(i + i0, j +198

j0), s0, f0, o0〉 = 〈(i, j), s, f, o〉 ∼ 〈(i+u, j+v), s, f, o〉 = 〈(i+u+i0, j+v+j0), s0, f0, o0〉, . . . 〈(i+199

u + ik, j + v + jk), sk, fk, ok〉 = 〈(i′ + u, j′ + v), f ′, o′〉 J200

I Lemma 2. There is an algorithm which, in O(|P ||S|) time either finds a base of the201

translational symmetries of the connected component of the rolling graph containing a given202

position 〈(i, j), s, f, o〉, or decides that the connected component is of finite size.203

Proof. Run a depth first search on the rolling graph starting from 〈(i, j), s, f, o〉, for N steps.204

If the depth first search stops, then the connected component containing 〈(i, j), s, f, o〉 in205

the rolling graph is of finite size. Otherwise, by the pigeonhole principle, we have found two206

positions with the same state. By Lemma 1, we obtain a translational symmetry u~a + v~b of207

the connected component.208

Next, factor the rolling graph by this symmetry vector, that is, GP,T /{u~a + v~b} identifies209

any pair of positions 〈(i, j), s, f, o〉 and 〈(i + ku, j + kv), s, f, o〉 for all k ∈ Z. Run again a210

FUN 2022



5:10 Rolling Polyhedra on Tessellations

depth first search in GP,T /{u~a + v~b} starting from 〈(i, j), s, f, o〉, for N steps. If the depth211

first search stops, then there are only a finite number of orbits for this symmetry vector, and212

so only one translational symmetry in this connected component. Otherwise, again by the213

pigeonhole principle and Lemma 1, we have found a second linearly independent translational214

symmetry u′~a + v′~b for this connected component. J215

The algorithm in the above lemma finds a basis of two, one or zero translational symmetries216

in the connected component. We can factor the rolling graph by those symmetries by217

identifying symmetric tiles. As the symmetries are multiples of the supertile symmetries, this218

is easily done by performing a coordinate change from the (i, j) coordinates to coordinates219

in the new basis. When there is no symmetry, the algorithm identifies a bounded connected220

component in GP,T . When there is one symmetry vector, the algorithm finds a finite number221

of orbits for this symmetry. Finally, when there are two symmetry vectors in the basis, the222

factored rolling graph GP,T /{u~a + v~b, u′~a + v′~b} is of size polynomial in N and the connected223

component can be explored completely by depth first search. In all three cases, a compact224

representation of the connected component has been found. In the two latter cases, it takes225

the form of a polynomially-sized fundamental domain and one or two translational symmetry226

vectors.227

2.3.1 Results on reachability228

The arguments above show how to identify the connected components in the rolling graph.229

In order to find the set of tiles that can be reached from a starting position, we only need to230

look at the first part (i, j), s of the positions in the connected component. Because this is a231

projection, it preserves the symmetry vectors. We obtain the following classification for the232

reachable area.233

Figure 17 No vector, one vector, two vectors but fail to cover, two vectors and full cover.

If the rolling graph does not have symmetry vectors, the reachable area is bounded and234

P on T starting at 〈t, f, o〉, is a bounded roller.235

If the rolling graph only has one linearly independent vector, the reachable area is a band236

and P on T starting at 〈t, f, o〉 is a band roller.237

If the rolling graph has two linearly independent vectors, the reachable area extends238

infinitely in all directions. If not every tile t is present in the reachable supertiles, the239

reachable tiles forms a plane with holes and P on T starting at 〈t, f, o〉 is a hollow-plane240

roller.241

If every tile t is present in the reachable supertiles, the reachable tiles cover the entire242

plane and P on T starting at 〈t, f, o〉 is a plane roller.243
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3 Toolbox for Puzzle Designers244

As mentioned in the Introduction, a rolling puzzle game typically includes a playing area with245

obstacles and/or paths, a polyhedron that will navigate that space, a starting position, and246

a goal position. The starting and/or goal positions sometimes specify a specific polyhedron247

face to match with a specific tile, in addition to just the tile. Once a polyhedron and a248

tessellation have been selected, there are several additional properties that can facilitate249

puzzle design. The rolling graph defined above can also be used to compute them.250

3.1 Properties251

Unused tiles in the playing area.252

The first and most crucial piece of information is provided directly by the reachability253

computed in the previous section. For the puzzle to be solvable, the goal tile should be in254

the reachable area from the start tile. Also, when the game includes interactive elements,255

they cannot not be usefully placed on tiles that cannot be reached (except as misdirection).256

Unused faces on the polyhedron.257

For face-matching puzzles, determining which faces of the polyhedron are usable in the258

puzzle is also important. Some faces might not be compatible with the tiling, while others259

might not appear in the connected rolling graph despite being compatible. For example,260

puzzle designers should avoid placing the goal on a polyhedron face that cannot be rolled on.261

Unused faces of the polyhedron can easily be detected while computing the reachable area.262

Guaranteed starting points.263

When using a plane roller, we must select a starting state (tile, face, and orientation) from264

which the polyhedron can reach the whole plane. This task can be simplified by selecting a265

guaranteed starting point, which has the property that every tile in the plane is reachable266

from that starting tile, no matter what polyhedron face and orientation is used as a starting267

state.268

I Definition 3. Given a plane roller pair (P, T ), a tile t ∈ T is a guaranteed starting point269

if, for every f ∈ P with |f | = |t|, and for every o ∈ f , we have P on T starting at 〈t, f, o〉 is270

a plane roller.271

I Definition 4. Given a rolling pair (P, T ) with reachable area RA, a tile t ∈ T is a272

guaranteed starting point if, for every f ∈ P with |f | = |t|, for every o ∈ f , and for every273

ti ∈ RA, there is a face fi and orientation oi such that 〈t, f, o〉 ∼ 〈ti, fi, oi〉.274

Which faces reach which tiles: face-completeness.275

In a face-matching rolling puzzle game, the objective is to reach a specific tile with a specific276

face on the polyhedron (often marked by a different color). In some cases, not every face of a277

particular shape can reach every tile. When using a polyhedron/tiling pair in a puzzle game,278

it can help to know which face can reach which tile. We can track specific tiles that can be279

reached by every compatible face during our computation. We call such tiles face-complete280

tiles. Refer to Figure 18.281
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I Definition 5 (face-complete tile). A rolling pair (P, T ) with starting state 〈t0, f0, o0〉 has282

a face-complete tile t ∈ T if all compatible faces of the polyhedron can roll on t with283

some orientation, that is, for all f ∈ P with |f | = |t|, there is an orientation o such that284

〈t, f, o〉 ∼ 〈t0, f0, o0〉.285

I Definition 6 (face-orientation-complete tile). A tile is face-orientation-complete if it can286

be visited with all compatible faces in every orientation within a connected component.287

3.2 Puzzlemaker’s Reference Image288

We can combine all of the above results into one image that serves as a reference point for289

puzzlemakers. Figure 18 shows an example. This image allows one to select a tessellation/290

polyhedron pair very easily depending on the puzzle’s needs.291

Figure 18 Puzzlemaker’s reference image: Left: polyhedron and its used faces (net). Right:
Tiling and tile properties.

The full set of reference images can be found on our website: https://akirabaes.com/292

polyrolly/.293

4 Implementation294

The roller classification algorithm was implemented in Python 3.8 and is available on295

GitHub at https://github.com/akirbaes/RollingPolyhedron/. It uses NumPy and296

SymPy for creating a minimal linearly independent base, and pygame to produce images. The297

implemented version performs further manipulations, such as aggregating connected rolling298

graph states grouped by supertile into superstates, to lower processing time and avoid dealing299

with individual tile positions calculations by only looking at the supertile cartesian coordinates.300

The result table can be consulted at https://akirabaes.com/polyrolly/resulttable/.301

We defined the supertiles of each tiling by hand in a custom periodic tessellation drawing302

tool, as we lacked code to automatically convert vertex-type orbits (isohedral, edges) notation303

to dual-graph supertile (isogonal, tiles) notation, but we did have a list of n-uniform304

tessellation drawings [7].305

An interactive 3D visualization of the rolling logic was implemented by Université libre306

de Bruxelles Computer Science Bachelor students [3]; see Figure 1.307

https://akirabaes.com/polyrolly/
https://akirabaes.com/polyrolly/
https://akirabaes.com/polyrolly/
https://github.com/akirbaes/RollingPolyhedron/
https://akirabaes.com/polyrolly/resulttable/
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5 Open Problem308

It is left to determine, for the 87 polyhedra out of the 129 considered that did not generate a309

plane roller with the 131 considered tilings, if there exists a tiling on which they would be310

able to roll on the 2D plane.311

dodecahedron, truncated cube, truncated octahedron, rhombicuboctahedron,
truncated cuboctahedron, snub cube, snub cube c, icosidodecahedron,
truncated dodecahedron, truncated icosahedron, rhombicosidodecahedron,
truncated icosidodecahedron, snub dodecahedron, snub dodecahedron c, j2, j4,
j5, j6, j7, j9, j18, j19, j20, j21, j23, j24, j25, j32, j33, j34, j35, j36, j38, j39, j40, j41, j42,
j43, j45, j45 c, j46, j46 c, j47, j47 c, j48, j48 c, j49, j52, j53, j55, j57, j58, j59, j60, j61,
j63, j64, j66, j67, j68, j69, j70, j71, j72, j73, j74, j75, j76, j77, j78, j79, j80, j81, j82,
j83, j91, j92, triangular prism, pentagonal prism, hexagonal prism, octagonal prism,
decagonal prism, dodecagonal prism, pentagonal antiprism, octagonal antiprism,
decagonal antiprism, dodecagonal antiprism

Table 1 Considered polyhedra which did not generate a plane roller with considered tilings
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A Result Tables365

tetrahedron with (36) • cube with (44) • octahedron with (36) • icosahedron
with (36) • truncated tetrahedron with (36; 32.62) • cuboctahedron with
(32.4.3.4), (36; 32.4.3.4), (33.42; 32.4.3.4)1, (36; 32.4.3.4; 32.4.3.4) • j1 with (32.4.3.4),
(36; 32.4.3.4), (33.42; 32.4.3.4)1, (36; 33.42; 32.4.3.4), (36; 32.4.3.4; 32.4.3.4) • j3 with
(36; 32.4.3.3.4; 3.42.6), (36; 32.4.3.4; 3.42.6; 3.4.6.4) • j8 with (44), (36; 33.42; 44)1,
(36; 33.42; 44)3, (36; 33.42; 32.4.3.4; 44) • j10 with (36), (36; 33.42)1, (36; 33.42)2,
(36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) •
j11 with (36) • j12 with (36) • j13 with (36) • j14 with (36; 33.42)1 • j15 with (36; 33.42)1
• j16 with (36; 33.42)1 • j17 with (36) • j22 with (36; 34.6)1, (36; 34.6; 3.6.3.6)2,
(36; 34.6; 3.6.3.6)3, (36; 36; 34.62) • j26 with (32.4.3.4), (33.42; 32.4.3.4)2,
(36; 32.4.3.4; 32.4.3.4) • j27 with (33.42), (33.42; 32.4.3.4)1, (36; 33.42; 32.4.3.4),
(33.42; 32.4.3.4; 32.4.3.4) • j28 with (33.42), (33.42; 44; 44)1 • j29 with (32.4.3.4),
(36; 32.4.3.4; 32.4.3.4) • j30 with (33.42) • j31 with (32.4.3.4), (36; 32.4.3.4; 32.4.3.4) •
j37 with (44) • j44 with (36; 32.4.3.4; 32.4.3.4), (33.42; 32.4.3.4; 32.4.3.4) • j44 chiral
with (36; 32.4.3.4; 32.4.3.4) • j50 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4),
(36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) • j51 with (36) • j54 with (3.4.6.4)
• j56 with (3.4.6.4) • j62 with (36) • j65 with (3.6.3.6) • j84 with (36) • j85 with (36),
(36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4), (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1,
(36; 33.42; 33.42)2, (36; 33.42; 32.4.3.4; 44) • j86 with (36), (36; 33.42)1, (36; 33.42)2,
(36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 33.42; 44)1, (36; 33.42; 44)2, (36; 36; 33.42)1,
(36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) • j87 with (36), (36; 33.42)1, (36; 33.42)2,
(36; 32.4.3.4), (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 32.4.3.4; 44) • j88 with
(36), (36; 33.42)1, (36; 33.42)2, (36; 33.42; 32.4.3.4), (36; 33.42; 44)1, (36; 33.42; 44)2,
(36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1, (36; 33.42; 33.42)2 • j89 with
(36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4), (36; 33.42; 32.4.3.4), (36; 33.42; 44)3,
(36; 33.42; 44)4, (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1, (36; 33.42; 33.42)2
• j90 with (36), (36; 33.42)1, (36; 33.42)2, (36; 32.4.3.4), (36; 33.42; 32.4.3.4),
(36; 33.42; 44)1, (36; 33.42; 44)2, (36; 36; 33.42)1, (36; 36; 33.42)2, (36; 33.42; 33.42)1,
(36; 33.42; 33.42)2, (36; 32.4.3.4; 32.4.3.4), (36; 33.42; 32.4.3.4; 44) • square antiprism
with (33.42) • hexagonal antiprism with (34.6), (36; 34.6)1, (36; 34.6)2, (34.6; 32.62),
(36; 34.6; 32.62)2, (36; 34.6; 3.6.3.6)1, (36; 34.6; 3.6.3.6)2, (36; 34.6; 3.6.3.6)3, (36; 36; 34.62),
(36; 34.6; 34.6), (34.6; 34.6; 3.6.3.6)1, (34.6; 34.6; 3.6.3.6)2, (36; 34.6; 32.62; 3.6.3.6),
(34.6; 32.62; 32.62; 3.6.3.6)

Table 2 Plane-roller polyhedra and tilings (42 polyhedra and 145 pairings).
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tetrahedron (x7) • octahedron (x7) • icosahedron (x7) • truncated tetrahedron (x12)
• cuboctahedron (x4) • truncated cube • truncated octahedron (x10) •
rhombicuboctahedron (x8) • truncated cuboctahedron (x6) • snub cube (x13)
• snub cube chiral (x12) • truncated icosahedron (x4) • rhombicosidodecahedron (x4)
• truncated icosidodecahedron (x5) • snub dodecahedron (x5) •
snub dodecahedron chiral (x4) • j1 (x6) • j3 (x8) • j7 (x5) • j8 • j10 (x15) •
j11 (x6) • j12 (x7) • j13 (x7) • j14 (x15) • j15 (x15) • j16 (x15) • j17 (x7) • j18 (x7) •
j19 (x4) • j22 • j26 (x2) • j27 (x13) • j28 (x8) • j29 (x2) • j30 (x6) • j31 • j35 (x11) •
j37 (x3) • j38 (x7) • j44 (x6) • j44 chiral (x5) • j45 (x2) • j45 chiral (x2) • j49 (x8)
• j50 (x16) • j51 (x7) • j53 (x6) • j54 (x14) • j55 (x10) • j56 (x16) • j57 (x14) •
j62 (x4) • j65 (x3) • j66 • j72 (x4) • j74 (x10) • j75 (x6) • j76 (x4) • j78 (x4) •
j79 (x6) • j81 (x4) • j84 (x7) • j85 (x16) • j86 (x16) • j87 (x18) • j88 (x18) • j89 (x20)
• j90 (x16) • triangular prism (x12) • hexagonal prism (x18) • octagonal prism
• dodecagonal prism (x4) • square antiprism (x5) • hexagonal antiprism (x2) •
dodecagonal antiprism (x2)

Table 3 Hollow-plane-roller polyhedra and tilings (76 polyhedra and 588 pairings).

tetrahedron (x35) • cube (x41) • octahedron (x35) • icosahedron (x35) •
truncated tetrahedron (x34) • cuboctahedron (x3) • truncated octahedron (x15)
• rhombicuboctahedron (x43) • snub cube (x7) • snub cube chiral (x8) •
truncated icosahedron (x13) • rhombicosidodecahedron (x2) • snub dodecahedron (x7)
• snub dodecahedron chiral (x7) • j1 (x7) • j3 (x2) • j7 (x43) • j8 (x39) • j9 (x42) •
j10 (x29) • j11 (x31) • j12 (x35) • j13 (x35) • j14 (x42) • j15 (x42) • j16 (x42) • j17 (x35)
• j18 (x43) • j19 (x41) • j20 (x42) • j21 (x42) • j22 (x30) • j23 (x30) • j24 (x30) • j25 (x30)
• j26 (x7) • j27 (x17) • j28 (x46) • j29 (x4) • j30 (x15) • j31 (x3) • j35 (x44) • j36 (x49) •
j37 (x46) • j38 (x44) • j39 (x47) • j40 (x42) • j41 (x42) • j42 (x42) • j43 (x42) • j44 (x32)
• j44 chiral (x33) • j45 (x31) • j45 chiral (x32) • j46 (x32) • j46 chiral (x32) • j47 (x30) •
j47 chiral (x30) • j48 (x30) • j48 chiral (x30) • j49 (x20) • j50 (x27) • j51 (x35) • j54 (x8)
• j55 (x10) • j56 (x15) • j57 (x11) • j62 (x17) • j65 (x25) • j67 • j72 • j73 (x5) • j76 •
j77 (x5) • j80 (x5) • j84 (x35) • j85 (x32) • j86 (x27) • j87 (x28) • j88 (x23) • j89 (x21)
• j90 (x25) • triangular prism (x45) • pentagonal prism (x42) • hexagonal prism (x36)
• octagonal prism (x42) • decagonal prism (x42) • dodecagonal prism (x43) •
square antiprism (x37) • pentagonal antiprism (x30) • hexagonal antiprism (x40) •
octagonal antiprism (x30) • decagonal antiprism (x30) • dodecagonal antiprism (x30)

Table 4 Band-roller polyhedra and tilings (94 polyhedra and 2623 pairings).
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