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Abstract

We show that every convex polyhedron may be un-
folded to one planar piece, and then refolded to a
different convex polyhedron. If the unfolding is re-
stricted to cut only edges of the polyhedron, then
we show that many regular and semi-regular poly-
hedra are “edge-unfold rigid” in the sense that each
of their unfoldings may only fold back to the origi-
nal. For example, all of the 43,380 edge unfoldings
of a dodecahedron may only fold back to the dodec-
ahedron. We begin the exploration of which polyhe-
dra are edge-unfold rigid, demonstrating infinite rigid
classes through perturbations, and identifying one in-
finite nonrigid class: tetrahedra.
(The full version of this paper is available.!)

1 Introduction

It has been known since [5] and [3] that there are con-
vex polyhedra, each of which may be unfolded to a
planar polygon and then refolded to different convex
polyhedra. For example, the cube may be unfolded
to a “Latin cross” polygon, which may be refolded to
22 distinct non-cube convex polyhedra [4, Figs. 25.32-
6]. But there has been only sporadic progress on un-
derstanding which pairs of convex polyhedra? have a
common unfolding. A notable recent exception is the
discovery [7] of an unfolding of a cube that refolds to a
regular tetrahedron, partially answering Open Prob-
lem 25.6 in [4, p. 424].

Here we begin to explore a new question, which we
hope will shed light on the unfold-refold spectrum of
problems: Which polyhedra P are refold-rigid in the
sense that any unfolding of P may only be refolded
back to P? The answer we provide here is: NONE—
Every polyhedron P has an unfolding that refolds to
an incongruent P’. Thus every P may be transformed
to some P’.
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This somewhat surprising answer leads to the next
natural question: Suppose the unfoldings are re-
stricted to edge unfoldings, those that only cut along
edges of P (rather than permitting arbitrary cuts
through the interior of faces). Say that a polyhe-
dron P whose every edge unfolding only refolds back
to P is edge-unfold rigid, and otherwise is an edge-
unfold transformer. It was known that four of the
five Platonic solids are edge-unfold transformers (e.g.,
[2] and [6]). Here we prove that the dodecahedron is
edge-unfold rigid: all of its edge unfoldings only fold
back to the dodecahedron. The proof also demon-
strates edge-unfold rigidity for 11 of the Archimedean
solids. We also establish the same rigidity for infinite
classes of slightly perturbed versions of these polyhe-
dra. In contrast to this, we show that every tetra-
hedron is an edge-unfold transformer: at least one
among a tetrahedron’s 16 edge unfoldings refolds to a
different polyhedron.

This work raises many new questions, summarized
in Section 6.

2 Notation and Definitions

We will use P for a polyhedron in R3 and P for a
planar polygon. An unfolding of a polyhedron P is
development of its surface after cutting to a single
(possibly overlapping) polygon P in the plane. The
surface of P must be cut open by a spanning tree to
achieve this. An edge-unfolding only includes edges of
P in its spanning cut tree. Note that we do not insist
that unfoldings avoid overlap.

A folding of a polygon P is an identification of its
boundary points that satisfies the three conditions
of Alexandrov’s theorem: (1) The identifications (or
“gluings”) close up the perimeter of P without gaps;
(2) The resulting surface is homeomorphic to a sphere;
and (3) Identifications result in < 27 angle glued at
every point. Under these three conditions, Alexan-
drov’s theorem guarantees that the folding produces
a convex polyhedron, unique once the gluing is spec-
ified. See [1] or [4]. Note that there is no restriction
that whole edges of P must be identified to whole
edges, even when P is produced by an edge unfolding.
We call a gluing that satisfies the above conditions an
Alexandrov gluing.

A polyhedron P is refold-rigid if every unfolding
of P may only refold back to P. Otherwise, P is
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a transformer. A polyhedron is edge-unfold rigid if
every edge unfolding of P may only refold back to P,
and otherwise it is an edge-unfold transformer.

3 Polyhedra Are Transformers

The proof that no polyhedron P is refold rigid breaks
naturally into two cases. We first state a lemma that
provides the case partition. Let x(v) be the curvature
at vertex v € P, i.e., the “angle gap” at v: 27 minus
the total incident face angle a(v) at v. By the Gauss-
Bonnet theorem, the sum of all vertex curvatures of
P is 4.

Lemma 1 For every polyhedron P, either there is a
pair of vertices with k(a) + k(b) > 2w, or there are
two vertices each with at most 7 curvature: k(a) <
and k(b) < 7.

Proof. Suppose there is no pair with curvature sum
more than 27. So we have k(v1) + k(v2) < 27 and
k(v3) 4+ k(vs) < 27 for four distinet vertices. Suppose
neither of these pairs have both vertices with at most
7 curvature. If x(vy) > m, then k(v1) < 7; and sim-
ilarly, if k(v4) > m, then k(vs) < w. Thus we have
identified two vertices, v; and v3, both with at most
T curvature. (]

We can extend this lemma to accommodate 3-vertex
doubly covered triangles as polyhedra, because then
every vertex has curvature greater than .

Lemma 2 Any polyhedron P with a pair of vertices
with curvature sum more than 2w is not refold-rigid:
There is an unfolding that may be refolded to a dif-
ferent polyhedron P’.

Proof. Let x(a)+rx(b) > 27, and so the incident face
angles satisfy a(a) + a(b) < 2m. Let v be a shortest
path on P connecting a to b. Cut open P with a cut
tree T that includes ~ as an edge. How T is completed
beyond the endpoints of v = ab doesn’t matter.

Let 71 and 72 be the two sides of the cut ~y, and
let my and mso be the midpoints of 7, and 5. Reglue
the unfolding by folding v, at m; and gluing the two
halves of ;1 together, and likewise fold o at mo. All
the remaining boundary of the unfolding outside of ~
is reglued back exactly as it was cut by T'.

The midpoint folds at m; and ms have angle 7 (be-
cause 7 is a geodesic). The gluing draws the endpoints
a and b together, forming a point with total angle
a(a) + a(b) < 2m. Thus this gluing is an Alexandrov
gluing, producing some polyhedron P’. Generically
P’ has one more vertex than P: it gains two vertices
at m; and msz, and a and b are merged to one. P’
could only have the same number of vertices as P if
a(a) + a(b) = 27, which is excluded in this case. O

Lemma 3 Any polyhedron P with a pair of vertices
each with curvature at most m is not refold-rigid:
There is an unfolding that may be refolded to a dif-
ferent polyhedron P’.

Proof. Let a and b be a pair of vertices with x(a) < 7
and k(b) < w, and so a(a) > 7 and «(b) > 7. Let
v = ab be a shortest path from a to b on P. Because
the curvature at each endpoint is at most m, there is
at least 7 surface angle incident to a and to b. This
permits identification of a rectangular neighborhood
R on P with midline ab, whose interior is vertex-free.

Now we select a cut tree T' that includes ab and
otherwise does not intersect R. This is always possible
because there is at least m surface angle incident to
both a and b. So we could continue the path beyond
ab to avoid cutting into R. Let T unfold P to polygon
P. We will modify T to a new cut tree T".

Replace ab in T by three edges ab’, b'a’, a’b, forming
a zigzag ‘Z’-shape, Z = ab'a’b, with Z C R. We will
illustrate with an unfolding of a cube, shown in Fig. 1,
with ab the edge cut between the front (F) and top
(T) faces of the cube.

1

Figure 1: Unfolding of a unit cube. The cut edge
ab is replaced by Z = ab’a’b. The unfolding P’ is
illustrated. The insert shows the gluing in the vicinity
of ab in the refolding to P’.

We select an angle ¢ determining the Z according
to two criteria. First, e is smaller than either x(a) and
k(b). Second, ¢ is small enough so that the following
construction sits inside R. Let R’ C R be a rectangle
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whose diagonal is ab; refer to Fig. 2. Trisect the left

Figure 2: Construction of zig-zag path Z.

and right sides of R’, and place a’ and b’ two-thirds
away from a and b respectively. The angle of the Z
at a’ and at V' is €. Aab'a’ and Aba't’ are congruent
isosceles triangles; so |ab’| = [V'a’| = |a’b|.

The turn points a’ and b’ have curvature zero on P
(because Z C R and R is vertex-free). Let P’ be the
polygon obtained by unfolding P by cutting 7”, and
label the pair of images of each Z corner aq,a}, ..., b,
as illustrated in Fig. 1. Now we refold it differently, to
obtain a different polyhedron P’. “Zip” P’ closed at
the reflex vertices a} and b}. Zipping at a} glues ahd)
to ahbe, so that now be = bj; zipping at b} glues bja)
to bia1, so that now a; = a. (See the insert of Fig. 1.)
Finally, the two “halves” of the new a}b} = asbs are
glued together, and the remainder of T" is reglued just
as it was in 7.

This gluing produces new vertices near o’ and V',
each of curvature k(a’) = k(') = €. An extra ¢ of
surface angle is glued to both a and b, so their curva-
tures each decrease by ¢ (and so maintain the Gauss-
Bonnet sum of 47). By the choice of g, these curva-
tures remain positive. Alexandrov’s theorem is sat-
isfied everywhere: the curvatures at a,b,a’,b’ are all
positive, and the lengths of the two halves of the new
ay b} = asbs edge are the same (and note this length is
not the original length of ab on P, but rather the side-
length of the isosceles triangles: |ab’| = |V/a’| = |a’d]).
So this refolding corresponds to some polyhedron P’.
It is different from P because it has two more vertices
at @’ and b’ (vertices at a and b remain with some
positive curvature by our choice of ). ([

Putting Lemmas 2 and 3 together yields the claim:

Theorem 4 Every polyhedron has an unfolding that
refolds to a different polyhedron, i.e., no polyhedron
is refold-rigid.

4 Many (Semi-)Regular Polyhedra are Edge-
Unfold Rigid

Our results on edge-unfold rigidity rely on this theo-
rem:

Theorem 5 Let 0., be the smallest angle of any
face of P, and let ky.x be the largest curvature at

any vertex of P. If Onin > Kmax, then P is edge-
unfold rigid.

Proof. Let T be an edge-unfold cut tree for P, and
P the resulting unfolded polygon. No angle on the
boundary of P can be smaller than 0,,;,. Let z be
a leaf node of T and y the parent of . The exterior
angle at = in the unfolding P is at most Ky.x. Because
every internal angle of P is at least 0;,, which is
larger than kpax, no point of P can be glued into =,
leaving the only option to “zip” together the two cut
edges deriving from zy € T. Let T/ = T \ zy be the
cut tree remaining after this partial gluing, and P’
the partially reglued manifold.

If 77 is not empty, it is a tree, with at least two
leaves, one of which might be y (if  was the only
child of y). Any leaf z € T’ corresponds to some
vertex v € P, with all but one incident edge already
glued. Because P’ has not gained any new angles
beyond those available in P, we have returned to the
same situation: no angle of P’ is small enough to fit
into the angle gap at z, which is at most kax at any
v. Thus again the edge of T” incident to z must be
zipped in the gluing. Continuing in this manner, we
see that T" may only be reglued by exactly identifying
every cut-edge pair, reproducing P. O

Corollary 6 The regular and semi-regular solids
that satisfy Theorem 5, listed in Table 4, are all edge-
refold rigid.

Corollary 7 Any polyhedron P that satisfies The-
orem 5, may be “perturbed” by moving its vertices
slightly to create an uncountable number of edge-
refold rigid polyhedra.

Proof. Proof omitted. O

5 Tetrahedra are edge-unfold transformers
The goal of this section is to prove this theorem:

Theorem 8 Every tetrahedron may be edge-
unfolded and refolded to a different polyhedron.

There are 16 distinct edge unfoldings of a tetrahe-
dron 7. The spanning cut trees that determine these
unfoldings fall into just two combinatorial types: The
cut tree is a star, a Y-shaped “trident” with three
leaves, or the cut tree is a path of three edges. There
are 4 different tridents, and 2-(5) = 12 different paths.
In all these unfoldings, the polygon P that consti-
tutes the unfolded surface is a hexagon: the three cut
edges becomes three pairs of equal-length edges of the
hexagon. Our goal is to show that, for any 7, at least
one of the 16 unfoldings P may be refolded to a poly-
hedron P’ not congruent to 7.
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emin >Kmax

’ Polyhedron Name ‘ Ormin ‘ Kmax

’ Dodecahedron ‘ % ‘ % ‘ v
Trunc. Cube % % v
Rhombicuboctahedron % % v
Trunc. Cuboctahedron % % v
Snub Cube % % v
Icosidodecahedron % 12—5 v
Trunc. Dodecahedron % % v
Trunc. Icosahedron % % v
Rhomb-
icosidodecahedron % % v
Trunc.

Icosidodecahedron % % v
Snub Dodecahedron % % v
Pseudo-

rhombicuboctahedron % % v

Table 1: Inventory of minimum face angles and maxi-
mum vertex curvatures, for selected regular and semi-
regular polyhedra. All angles expressed in units of 7.

Proof. (of Theorem 8). The proof classifies tetrahe-
dra by their four curvatures, and then establishes the
claim for each of the resulting four classes. A concrete
example of one of the classes, a 2r-tetrahedron with
K1 > Ko > 1 > K3 > Ky, is shown in Fig. 3. Proof
omitted. [

Figure 3: A tetrahedron with vy,vs “convex” and
vz, V4 “reflex,” cut open with a trident rooted at vy,
producing a hexagon with one reflex vertex with exte-
rior angle k3. The proof shows that the convex angle
« derived from v fits within x3.

6 Open Problems

Our work so far just scratches the surface of a po-
tentially rich topic. Here we list some questions sug-
gested by our investigations.

1. Star unfoldings (e.g., [4, Sec. 24.3]) are natural
candidates for rigidity. Is it the case that almost
every star unfolding of (almost?) every polyhe-
dron is refold-rigid?

2. Which (if either) of the following is true? (a) Al-
most all polyhedra are edge-unfold rigid. (b) Al-
most all polyhedra are edge-unfold transformers.

3. Characterize the polygons P that can fold in
two different ways (have two different Alexandrov
gluings) to produce the exact same polyhedron
P. We have only sporadic examples of this phe-
nomenon (among the foldings of the Latin cross).

4. Do our transformer results extend to the situa-
tion where the unfoldings are required to avoid
overlap? We can extend Lemma 2 to ensure
nonoverlap, but extending Lemma 3 seems more

difficult.

5. One could view an edge-unfold and refold oper-
ation as a directed edge between two polyhedra
in the space of all convex polyhedra. Thm. 5 and
Cor. 7 show neighbors of some (semi-)regular
polyhedra have no outgoing edges. What is the
connected component structure of this space?
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