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Computational Complexity of Piano-Hinged Dissections

Zachary ABEL†a), Erik D. DEMAINE††b), Martin L. DEMAINE††c), Nonmembers, Takashi HORIYAMA†††d),
and Ryuhei UEHARA††††e), Members

SUMMARY We prove NP-completeness of deciding whether a given
loop of colored right isosceles triangles, hinged together at edges, can be
folded into a specified rectangular three-color pattern. By contrast, the
same problem becomes polynomially solvable with one color or when the
target shape is a tree-shaped polyomino.
key words: GeoLoop, hinged dissection, Ivan’s Hinge, NP-hardness, pa-
per folding

1. Introduction

One of the simplest and most practical physical folding
structures is that of a hinge, as in most doors or attach-
ing the lid to a grand piano. Frederickson [1] introduced
a way to make folding structures out of such hinges that
can change their shape between “nearly 2D” shapes. The
basic idea is to thicken a (doubly covered) 2D polygon by
extruding it orthogonally into a height-2ε 3D prism, divide
that prism into two height-ε layers, further divide those lay-
ers into ε-thickened polygonal pieces, and hinge the pieces
together with hinges along shared edges. The goal in a
piano-hinged dissection is to find a connected hinging of ε-
thickened polygonal pieces that can fold into two (or more)
different 2ε-thickened polygons.

Piano-hinged dissections are meant to be a more prac-
tical form of hinged dissections, which typically use point
hinges and thus are more difficult to build [1]. Although
hinged dissections have recently been shown to exist for
any finite set of polygons of equal area [2], no such result
is known for piano-hinged dissections.

Here we study a family of simple piano-hinged dis-
sections, which we call a piano-hinged loop: 4n identical
ε-thickened right isosceles triangles, alternating in orienta-
tion, and connected into a loop by hinges on the bottoms of
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their isosceles sides; see Fig. 1. Frederickson [1, Chapter
11] mentions without proof that this piano-hinged dissec-
tion can fold into any (2ε-thickened) n-omino, that is, any
connected edge-to- edge joining of n unit squares.

Three commercial puzzles, shown in Fig. 2, consist of
piano-hinged loops. GeoLoop is a piano-hinged loop with
n = 6 that was patented by Kenneth Stevens in 1993/1994
[3] and sold by Binary Arts∗ in 1996. The pieces alternate
between two colors, and by a checkerboard property of the
piano-hinged loop, the resulting squares of any polyomino
will alternate in color (on either side), so this puzzle is ef-
fectively uncolored. Ivan’s Hinge is a piano-hinged loop
with n = 4 that was patented by Jan Essebaggers and Ivan
Moscovich in 1993/1994 [4] and sold by Paradigm Games in
the mid-to-late 1990s [1] and recently by Fat Brain Toys∗∗.
Each piece is colored irregularly with one of two colors, and
the goal in this puzzle is to make not only the specified tetro-
mino shape but also the specified two-color pattern. Tony’s
Hinge is a variation of Ivan’s Hinge, sold by Kellogg Com-
pany in 1988 but also copyright by Ivan Moscovitch and
made by Paradigm Games. It uses colored images and re-
quires putting certain images in particular places, in addition
to the color constraints.

Our results.

In this paper, we investigate the computational complexity
of folding colored and uncolored piano-hinged loop puzzles
into n-ominoes.

First we consider the uncolored piano-hinged loop, as
in GeoLoop. For completeness, we prove Frederickson’s
claim that this loop can realize any 2ε-thickened n-omino,
by mimicking a simple inductive argument for hinged dis-
sections of polyominoes from [5]. For the special case of
tree-shaped polyominoes, where the dual graph of edge-to-
edge adjacencies among unit squares forms a tree, we prove
further that the folding of the piano-hinged loop is unique
up to cyclic shifts of the pieces in the loop.

Next we consider colored piano-hinged loops, as in
Ivan’s Hinge. For tree-shaped polyominoes, the previous
uniqueness result implies that the problem can be solved in
O(n2) time by trying all cyclic shifts. (In particular, this
observation makes the n = 4 case of Ivan’s Hinge easy to
solve in practice, as each tetromino has either 1 or 4 span-

∗Binary Arts changed its name to ThinkFun (http://www.think
fun.com) in 2003.
∗∗http://www.fatbraintoys.com
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Fig. 1 Small piano-hinged loop and its folding way.

Fig. 2 GeoLoop, Ivan’s Hinge, and Tony’s Hinge.

ning trees to try.) For general polyominoes, we prove that
the problem is NP-complete even if the number of colors is
3, each piece is colored uniformly one color, and the target
shape is a rectangle.

2. Preliminaries

A piano-hinged loop consists of a loop of 4n consecu-
tive isosceles right triangles p0, q0, p1, q1, . . . , p2n−1, q2n−1,
as shown in Fig. 1. Every two consecutive triangular pieces
share one of two isosceles edges. The pi’s have a common
orientation (collinear hypotenuses when unfolded), as do the
qi’s, and these two orientations differ from each other. Each
shared edge is a piano hinge on the back side that permits
bending inward (bringing the two back sides together).

In a folded state of the piano-hinged loop into a doubly
covered polyomino, (1) each piano hinge is flat (180◦) or
folded inward (360◦); and (2) each unit square of the poly-

omino consumes exactly four triangles, with two triangles
on the front and two on the back side. Thus, in any folded
state, the exposed surface consists of all front sides of the
pieces, while the back sides of all pieces remain hidden on
the inside. In other words, each hinge is folded into the same
direction, or stays flat. Therefore, we can ignore the color of
the back side of each piece, so for simplicity we can assume
that each piece has a uniform color (instead of a different
color on each side). Let c(pi) and c(qi) denote the color of
piece pi and qi.

For the resultant polyomino P of n unit squares, we
define the connection graph G(P) = (V, E) as follows: V
consists of n unit squares, and E contains an edge {u, v} if
and only if squares u and v are adjacent in P. Having {u, v} ∈
E is a necessary but not sufficient condition for there to be
a hinge connecting the four pieces representing square u to
the four pieces representing square v; if there is such a hinge,
we call u and v joined. We note that P is doubly covered
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polyomino; that is, u and v may have two possible hinges
on their front side and back side. We say u and v are joined
when they are joined by at least one of these possible hinges.

The uncolored piano-hinged loop problem asks
whether a given polyomino can be constructed as (the sil-
houette of) a folded state of a given piano-hinged loop. The
“silhouette” phrasing allows the folding to have unjoined
squares, which are adjacent in the polyomino but not at-
tached by a hinge in the folded state. The colored piano-
hinged loop problem asks whether a given colored poly-
omino pattern can be similarly constructed from a given col-
ored piano-hinged loop.

The piano-hinged loop has a simple checkerboarding
property as seen in GeoLoop in Fig. 2:

Observation 1: Consider two adjacent squares u and v (in
any direction) in a polyomino P, obtained as a folded state
of a piano-hinged loop. Without loss of generality, assume
that the top side of u contains (the front side of) triangle pi.
Then (1) the other triangle of u on front side is pj for some
j, (2) the backside of u contains two qs, (3) the front side of
v contains two qs, and (4) the backside of v contains two ps.

Proof: In a polyomino, each piano-hinge takes one of two
possible state; it is folded or flat. Let t be any triangle, and t′
be the next triangle sharing a hinge (in any direction). With-
out loss of generality, t is pi on the front side of a square
u. Then t′ should be qi+1 mod (2n). When the hinge is flat, t′
is on the front side of the neighbor square v of the square
u containing t. If the hinge is folded, t′ is on the back side
of the square u containing t. These two cases imply the
checkerboarding property stated in the observation. That is,
if we color ps in white and qs in black, we always have a
checkerboarding color pattern regardless of the shape of the
resulting polyomino as seen in GeoLoop in Fig. 2. �

Ivan’s Hinge has a group of triangles that are
monochromatic as assumed above, and a group of triangles
with different colors on their front and back sides. How-
ever, these groups directly correspond to the parity classes
in Observation 1. Hence, for each unit square, the front side
consists of two triangles from the same group, and the back
side consists of two triangles from the other group. Thus,
from a theoretical point of view, we can again effectively
assume that the pieces are monochromatic. (Practically, the
differing colors can vary the color patterns, which can help
visually.)

3. Uncolored Piano-Hinged Loop

We begin with the universality theorem of GeoLoop,
claimed by Frederickson [1]:

Theorem 2 ([1]): Any polyomino P of n unit squares can
be realized as a folded state of the piano-hinge loop of 4n
pieces.

Proof: It is easy to see that for the case n = 1: The flat
state is already a unit square. In fact, Fig. 1(d) and Fig. 1(f)
explicitly show the case n = 3. We use an induction for

Fig. 3 An extension of four triangles.

n. Suppose all polyomino of k unit squares can be folded
from the piano-hinge loop of 4k pieces. Let P be a poly-
omino of k + 1 unit squares. Consider a spanning tree T
of the connection graph G(P). Let v be a leaf of T , and u
the parent of v in T . We remove the corresponding square v
from P and obtain a smaller polyomino P′ of k unit squares.
By inductive hypothesis, P′ can be realized as a folded state
of the piano-hinge loop of 4k pieces. Since P′ is obtained
from P by removing v from u, the corresponding square u
in P′ contains a boundary of P′ such that this edge of u was
attached to v in P. It is not difficult to see that each bound-
ary of a polygon from a piano-hinge loop should be a hinge
shared by two consecutive triangles pi and qi, or qi and pi+1

for some i. So we cut this boundary of u, attach four con-
secutive isosceles right triangles (as illustrated in Fig. 3; in
the figure, the boundary of two consecutive triangles p and
q is cut, and a new four triangles 1, 2, 3, 4 are attached there,
which yields the extended sequence p, 1, 2, 3, 4, q), and fold
them to form v in P. �

Once we fix the spanning tree T of G(P), we claim that
the folded state is uniquely determined up to cyclic shift of
the pieces. Both this corollary and the previous theorem
follow from a simple argument of repeatedly pruning leaves
in the graph of joinings.

Corollary 3: Let P be any polyomino of n unit squares
such that G(P) is a tree. Then it can be uniquely folded
from the piano-hinge loop of 4n pieces, up to cyclic shift of
the pieces.

For a given tree-shaped polyomino, the piano-hinge
loop traverses the tree in the same manner as the depth-first
search without crossing. That is, if we imagine that we are
in the maze in the form of the tree, and traverse the maze
by the right-hand rule, then we traverse each edge twice,
and this is the order followed by the piano-hinge loop. This
intuition will be useful in some proofs in this paper.

4. General Piano-Hinged Loop

Consider a polyomino P in which pieces pi and qi have col-
ors c(pi) and c(qi), respectively. When the connection graph
G(P) is a tree (or the spanning tree of G(P) is explicitly
given), we still have a polynomial time algorithm to solve
the problem:
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Fig. 4 Outline of the construction.

Theorem 4: Let P be any polyomino of n unit squares such
that G(P) is a tree T . Then the general piano-hinge loop
problem can be solved in O(n2) time.

Proof: Once we fix a position of one triangle in the loop
on T , the folded state forming T is uniquely determined by
Corollary 3. Hence, for each triangle in the loop, we tem-
porarily put it on a fixed point on T , and check if the color
pattern is achieved in this case in linear time. This gives us
an O(n2) time algorithm. �

Next we turn to the case that P is a general polyomino,
where the problem is NP-complete.

Theorem 5: The colored piano-hinge loop problem is NP-
complete, even if the number of colors is 3 and the target
polyomino is a rectangle.

Proof: It is clear that this problem is in NP, we in the follow-
ing show the hardness by reducing 3-PARTITION, defined
as follows.

3-PARTITION (cf. [6])
INSTANCE: A finite set A = {a1, a2, . . . , a3m} of 3m
weighted elements with w(aj) ∈ Z+, where w(aj) gives the
weight of aj, and a bound B ∈ Z+ such that each aj satisfies
B/4 < w(aj) < B/2 and

∑3m
j=1 w(aj) = mB.

QUESTION: Can A be partitioned into m disjoint sets
A(1), A(2), . . . , A(m) such that

∑
aj∈A(i) w(aj) = B for 1 ≤ i ≤

m?

It is well-known that 3-PARTITION is strongly NP-
complete, meaning that it is NP-hard even if the input is
written in unary notation [6]. In the following, we as-
sume that B = 10b for some positive integer b (other-
wise, multiply all values by 10). If A has a solution, we
can observe that each A(i) contains exactly three items since
B/4 < w(aj) < B/2 for each i and j.

The outline of the construction is illustrated in Fig. 4.
Our piano-hinge loop L consists of two parts (Fig. 4(a)). The
first part, which is called base part, is a series of black tri-
angles that will form m empty bins such that each bin will
filled by B gray unit squares. The second part, which is
called item part, is a series of alternating gray and white
triangles. The ith consecutive gray triangles represents the
weight of an element ai for each i, and consecutive white
triangles will be used to rearrange the items to put them into
bins in an arbitrary way.

Before precise construction, we here introduce a
crossover gadget, which is usually complicated and impor-
tant part for such a reduction. In the piano-hinge loop, it
is easy to cross since each square is doubly covered. It is
achieved as is illustrated in Fig. 5. In the figure, it is depicted
how a white piano-hinge loop of 16 pieces and a light gray
piano-hinge loop of 16 pieces cross each other. Each dark
gray area is the back side of each colored triangle. From the
initial position (a), we fold as in the figure. Then we have
two squares of area 2 in two loops such that they are not
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Fig. 5 Crossover gadget.

covered properly as in (b). Hence we flip the white loop ver-
tically, and put it on the light gray loop so that two squares
doubly cover one square as in (c). We note that the resultant
polyomino of 8 unit squares in (c) is doubly covered one.
Using this crossover gadget, we can make a crossing of a
long vertical sequence of unit squares and a long horizontal
sequence of unit squares. We note that these two sequences
are shifted one unit when they cross. The fixing of these
shifts is not required in the construction. In fact, all cross-
ings occur in the crossing phase in Fig. 6(c), but the gaps by
the shifts are filled in the next filling phase in Fig. 6(d).

Now we turn to the precise construction of the general
piano-hinge loop of 4(12m(12m + b + 3) + 36m2 + 1) pieces
from an instance of 3-PARTITION A = {a1, a2, . . . , a3m} and
B = 10b. The base part is simple. In Fig. 4(b), the black tri-
angles doubly cover the black area, and four of each back
side of white slanted hexagons are covered by black trian-
gles as in Fig. 5(c). Thus, in total, the number BL of black
triangles is equal to 4(12m × 3 − 3m × 8 + b × 2m + 1) =
32m + 8mb + 4.

The upper rectangle consists of 15m×12m unit squares.
This rectangle is divided into two rectangles of size 12m ×
12m and 3m × 12m. Roughly, each of a1, a2, . . . will con-
sume a rectangle of size 12m × 4 from bottom to top in the
left rectangle, and they are connected in the right rectan-
gle of size 3m × 12m. At the right rectangle, each ai uses
8i − 4 unit squares. Let the item part consist of W0 white
triangles, G1 gray triangles, W1 white triangles, . . ., G3m

gray triangles, and W3m white triangles in this order. For
each i = 1, 2, . . . , 3m, we set Gi = 4w(ai). We also set
W0 = 4(2×12m+4)+4, Wi = 4(4×12m+ (8(i+1)−4))+8
with 0 < i < 3m, and W3m = 4(2 × 12m + 24m − 4) + 4. In-
tuitively, W0 consists of the triangles in two lines before a1

(= 4(2×12m)), in right rectangle (= 4×4), and the triangles

just before a1 (= 4). Wi consists of the triangles in two lines
after ai (= 4(2×12m)), two lines before ai+1 (= 4(2×12m)),
in right rectangle (= 4 × (8i − 4)), the triangles just after
ai (= 4), and before ai+1 (= 4). The last W3m consists of
the triangles in two lines after a3m (= 4(2 × 12m)), in right
rectangle (= 4× (24m−4)), the triangles just after a3m (= 4).

The pattern that the loop should represent is illustrated
in Fig. 4(b): The upper half is a rectangle of size 15m ×
12m that consists of all white triangles. The lower half is a
rectangle of size 12m × (b + 3) with one black square on the
top right side, which is indicated by an arrow in the figure.
The left rectangle is almost surrounded by black squares,
and this area consists of m rectangular bins of size 10 × b.
Each bin is filled by gray squares, and it is connected to
the upper white area by three hexagonal white triangles as
shown in the figure.

This is end of the construction of the general piano-
hinge loop with its required pattern. It is easy to see that
the reduction can be done in polynomial time. Hereafter, we
sometimes abuse the notation B,Wi,Gi as the set of triangles
in the sequence.

We first observe the gray squares in each Gi. It is not
difficult to see that any crossing yields a unit square that con-
sists of two triangles coming from the crossing sequences.
However, all gray triangles are in monochromatic squares.
Thus, there is no gray sequence crossing cross the different
color sequences. Thus, if the loop makes the pattern, all tri-
angles in Gi appear in the same bin. That is, if the desired
pattern appears, we obtain a certain partition of A, and each
gray sequence enters and exits at a white gate on the top of
a bin. By the universality theorem 2, once we have the par-
tition of A, we always can fill the bin. More precisely, when
a bin can filled by gray triangles from Gi, G j, and Gk, we
first divide the area of the bin into three subareas such that
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Fig. 6 The placement of white triangles.

each subarea is attached to one of three white gate, and each
subarea consists of Gi, G j, or Gk triangles. Then, the uni-
versality theorem guarantees that we can doubly cover each
subarea by corresponding gray triangles.

By above observations, it is clear that if the gen-
eral piano-hinged loop has a solution, so does the 3-
PARTITION. Therefore, we now show that if the 3-
PARTITION has a solution, the general piano-hinged loop
has a solution.

We first consider the black triangles. Each hexagonal
white triangles in the pattern represents the crossing of white
vertical sequence and black horizontal sequence. That is,
each hexagonal white triangles has four black triangles in
its back side. Thus, in the lower rectangle, all black trian-
gles are connected. On the other hand, using the universal-
ity theorem, the black triangles to form m bins illustrated
in Fig. 4(b), with two endpoints comes to the upper right
square (indicated by an arrow in the figure). The packing of
the gray squares has been already discussed above. Thus, it
is sufficient to show how can we arrange the gray triangles
to arbitrary gate of a bin using white triangles W0, W1, . . .,
W3m in the upper white rectangle.

We here show the way of an arrangement of the white
triangles for any given ordering of a1, a2, . . . , a3m. First we
pay attention to the left rectangle of size 12m × 12m. For
each ai, we design a cross of a 1×12m rectangle and 12m×2
rectangle as in Fig. 6(a). We note that, in the figure, the
colors are used to distinguish the gadgets, but all triangles
are white in the loop. The heights of 12m × 2 rectangles
represent the indices of ai. (In the figure, a1, a2, a3, a4 is
arranged from left to right.) The placement of 1× 12m rect-

angle represents the position of bin. (In the figure, the items
are put in bins in order of a1, a4, a3, a2.) Now, we pile them
in the same area (Fig. 6(b)), and apply the crossing gadget
at each crossing point (Fig. 6(c)). Now, most unit squares
in 12m × 2 rectangle have an empty neighbor. This neigh-
borhood is checked in each dotted rectangle in Fig. 6(a), and
then each empty area has exactly one corresponding neigh-
bor as shown in Fig. 6(d). So we fill the empty area by the
corresponding neighbor in the same way in Fig. 3. After the
process, we can check that each number of squares used for
each ai is the same.

Lastly, we join all gadgets above with one black square
(indicated by an arrow in Fig. 4(b)) in the left rectangle of
size 3m × 12m, which can be done in a straightforward way
as shown in Fig. 6(e).

In the final step, we show that any cross of a 1 × 12m
rectangle and 12m× 2 rectangle in Fig. 6(a) is constructible.
We here give a sketch of the adjustment of the length of
the cross since the details are so fine that makes the argu-
ment unclear. For each i, we first wrap up the bottom half of
the horizontal bar, go down, put the gray triangles in a bin.
To do that, we use 4(2 × 12m) triangles form Wi−1. Then,
we go up with wrapping up the horizontal bars and vertical
bars to the top consuming 4(2 × 12m) triangles from Wi. To
make a cross in Fig. 6(a), we need only 4(3×12m) triangles.
The other 4 × 12m triangles are used to fill up the gaps in
Fig. 6(d). In Fig. 6(d), we drew that each upper square in the
horizontal bar covers the upper gap, and each lower square
covers the lower gap to make the idea clear. However, by
Theorem 2, we can arrange that any square can cover them.
Therefore, using the squares before/after gray triangles ap-
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propriately, we can adjust the crossing point. It is not diffi-
cult to see that the extra 4 × 12m triangles are enough to put
the crossing point arbitrary. Therefore, we can put the gray
triangles into any bin. �
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