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Representing a matching between pairs of planar objects as a set of non-crossing line segments
is a natural problem in computational geometry. It is well known, for instance, that given two
sets of n points in the plane, say n red points and n blue points, there always exists such a non-
crossing matching between red and blue points. In particular, it is not difficult to show that the
minimum Euclidean length matching is non-crossing. Kaneko and Kano [3] survey a number of
related results.
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Figure 1: Example of a non-crossing
matching for a set P = {p1, p2, p3} of
points and a set T = {t1, t2, t3} of planar
objects.

We investigate related questions for general planar
objects instead of points. In this case, the matching is
represented by line segments, the endpoints of which
belong to the corresponding matched objects. Note
that, from the above result, a non-crossing match-
ing always exists between two sets of objects. How-
ever, in this paper, we consider the problem of find-
ing a matching when we are given object pairs as in-
put. Since pairs are enforced, the existence of a non-
crossing matching is no longer guaranteed.

The problem can be seen as a 1-regular graph
drawing problem with constraints on the location of
the vertices. In all variants that we consider, every el-
ement pi in one of the sets of objects is a single point.
In the second set, the objects ti can be lines, segments
or point sets. More precisely, let P := {pi}ni=1, and
T := {ti}ni=1. A matching for (P, T ) consists of a set of
line segments (or edges) of the form {pimi}ni=1, where
mi ∈ ti. A matching is non-crossing if no pair of its
edges properly cross. This is illustrated in Figure 1.

We consider the problem of deciding whether a non-crossing matching exists for a given pair
(P, T ). We also consider the problem of finding one that minimizes either the maximum length of
an edge, or the sum of the lengths.
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Related work
Problems on matchings have an important role in combinatorial Graph Theory, for both theoreti-
cal and applied aspects. A large body of research has been devoted to this, (e.g., see the book by
Lovasz and Plummer [4]). The family of geometric problems that we consider is related to prob-
lems in shape matching, colour-based image retrieval, music score matching and computational
biology.

Suppose that the vertices of a graph are points in the plane, edges are rectilinear segments,
and edge weights are Euclidean distances. It is a simple fact that the sum of any pair of opposite
sides of a convex quadrilateral is strictly smaller than the sum of the diagonals. Remarkably this
implies than the minimum weight matching in any realization of the complete graphs K2n and
Kn,n, will consist of pairwise non-crossing segments.

These problems can be solved using the generic algorithms for weighted graphs. However, in
the planar case just mentioned, Vaidya [5] proved that it is possible to obtain specific algorithms
with better running times. This was later improved to O(n2+ε) by Agarwal et al. [1]. Similar
results have been obtained for other variations such as bottleneck matching or uniform matching,
in the work of Efrat, Itai and Katz [2].

Our results
We study the case where the objects ti are finite point sets. We prove that the decision problem is
NP-complete if the ti have size greater than 2; the proof is a reduction from 3-SAT. When all ti are
pairs of points, we can decide in quadratic time.

When the ti are line segments, the decision problem is NP-complete, even if the segments have
a fixed number of orientations, or if they all have unit length. On the other hand, we consider
various special cases, for which polynomial-time algorithms are provided:

• the segments are edges of a convex polygon containing all pi
• the segments belong to a single line and are disjoint
• the segments belong to a single line, but are not necessarily disjoint

In fact, for the first two special cases, the minimum-sum of edge lengths can also be found in
polynomial time.

Finally, we consider the problem of matching points with lines. In this case, a non-crossing
matching always exists, but the minimization problems are NP-hard. However, if the number of
distinct directions is k, then a solution can be found, approximating the optimal by a factor of
1/ sin( π2k ).
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