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Abstract: We analyze the computational complexity of several new variants of edge-matching puzzles. First
we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-
complete for strict inequalities but polynomial-time solvable for nonstrict inequalities. Second we analyze
three types of triangular edge matching, of which one is polynomial-time solvable and the other two are
NP-complete; all three are #P-complete. Third we analyze the case where no target shape is specified and
we merely want to place the (square) tiles so that edges match exactly; this problem is NP-complete. Fourth
we consider four 2-player games based on 1×n edge matching, all four of which are PSPACE-complete. Most
of our NP-hardness reductions are parsimonious, newly proving #P and ASP-completeness for, e.g., 1 × n
edge matching. Along the way, we prove #P- and ASP-completeness of planar 3-regular directed Hamil-
tonicity; we provide linear-time algorithms to find antidirected and forbidden-transition Eulerian paths; and
we characterize the complexity of new partizan variants of the Geography game on graphs.

Keywords: complexity, puzzles and games, satisfiability, Hamiltonicity, Eulerian paths, Geography

1. Introduction

In an edge-matching puzzle , we are given several tiles

(usually identical in shape), where each tile has a label on

each edge, and the goal is to place all the tiles (usually

via translation and rotation) into a given shape such that

shared edges between adjacent tiles have compatible labels.

In unsigned edge matching, labels are compatible if they

are identical (a matches a and nothing else). In signed

edge matching the labels have signs (e.g., +a and −a), and

two labels are compatible if they are negations of each other
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(+a matches −a and nothing else, and vice versa). Physi-

cal edge-matching puzzles date back to the 1890s [26]; per-

haps the most famous example is Eternity II which offered

a US$2,000,000 prize for a solution before 2011 [29].

1.1 Previous Work

The complexity of edge-matching puzzles has been stud-

ied since 1966 [3]. The most relevant work to this paper

is from two past JCDCG conferences. In 2007, Demaine

and Demaine [10] proved that signed and unsigned edge-

matching square-tile puzzles are NP-complete and equiva-

lent to both jigsaw puzzles and polyomino packing puzzles.

In 2016, Bosboom et al. [7] proved that signed and un-

signed edge-matching square-tile puzzles are NP-complete

even when the target shape is a 1 × n rectangle, and fur-

thermore hard to approximate within some constant factor.

Our work on 1×n triangle edge-matching puzzles is inspired

by an open problem proposed in the latter paper.

1.2 Our Results: Edge Matching

Table 1 summarizes our results in edge matching, de-

scribed in more detail below.

Inequality edge matching.

Our most complex result is an NP-hardness proof for

a new “<” compatibility condition, where edge labels are
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Compatibility Board Tiles Players Complexity

< 1× n square 1-player NP-complete

≤ m× n square 1-player P

Signed/unsigned 1× n square 1-player NP/#P-complete, (2-)ASP-hard*

Signed/unsigned 1× n equilateral triangle 1-player NP/#P-complete, (2-)ASP-hard*

Signed/unsigned 1× n right triangle (hypotenuse contact) 1-player NP/#P-complete, (2-)ASP-hard*

Signed/unsigned
√

2
2 × n right triangle (leg contact) 1-player ∈ P, #P-complete

Signed/unsigned O(1)× n square/triangular with O(1) colors 1-player ∈ P

Signed/unsigned shapeless square 1-player NP/#P/ASP-complete

Signed/unsigned 1× n square impartial 2-player PSPACE-complete

Signed/unsigned 1× n square partizan 2-player PSPACE-complete

Table 1: Our results on edge-matching puzzles. *Our proof gives ASP-completeness for 1 × n edge matching only when at

least one boundary edge is colored; otherwise, each solution can be rotated 180 degrees to form another valid solution, so we

get 2-ASP-hardness (NP-hard to find a third solution given two).

Fig. 1: A solved 2× 3 <-compatible edge-matching puzzle.

This solution is valid because 1 < 52 and 22 < 78 in the

top row, 3 < 7 and 7 < 21 in the bottom row, and 12 < 54,

12 < 14, and 1 < 45 in the columns.

numbers, horizontally adjacent edges match if the left edge’s

number is less than the right edge’s number, and vertically

adjacent edges match if the top edge’s number is less than

the bottom edge’s number. Fig. 1 shows an example. In Sec-

tion 2, we prove NP-hardness of <-compatible 1 × n edge

matching by reduction from another new NP-hard problem,

Interval-Pair Cover. The ≤-compatibility condition (where

equal numbers also match, or we assume all labels are dis-

tinct) turns out to be substantially easier: even rectangu-

lar puzzles turn out to be always solvable and we give a

polynomial-time algorithm.

ASP/#P-completeness for 1 × n edge matching.

In Section 3, we analyze edge matching for the first

time from the perspective of the number of solutions to

an instance, which is relevant to constructing puzzles with

unique solutions. Specifically, we prove ASP-completeness

for signed and unsigned 1 × n edge-matching puzzles

when the left boundary edge is colored (to prevent trivial

180◦ rotation of solutions), and 2-ASP-hardness and #P-

completeness even if the boundary is colorless.

Recall the following definitions of FNP, ASP-complete,

and #P-complete. FNP is a variant of NP that actually

specifies the valid certificates/solutions for an instance (in-

stead of just requiring that they exist); that is, an FNP

problem is a relation between instances and polynomial-

length certificates/solutions that can be checked in polyno-

mial time. For edge matching problems, the certificate we

consider is a valid placement of the given tiles within the

given shape. An FNP problem Π is ASP-complete [30] if

every FNP problem has a polynomial-time parsimonious

reduction (preserving the number of solutions) to Π along

with a polynomial-time bijection between solutions of the

two problems. ASP-completeness implies that the k-ASP

version of the FNP problem — given an instance and k so-

lutions to it, determine whether there is another solution —

is NP-hard [30]. An FNP problem is #P-complete [27] if

counting the number of solutions is as hard as counting the

number of solutions to any FNP problem, which is implied

by a reduction that is c-monious, meaning that it mul-

tiplies the number of solutions by a computable consistent

factor c ≥ 1.*1 Our reductions to 1 × n edge matching are

the first to be parsimonious or, when global 180◦ rotation is

allowed, 2-monious.

Triangular edge matching.

The conclusion of [7] claimed that the paper’s results ex-

tended to equilateral-triangle edge matching, but the pro-

posed simulation of squares by triangles is incorrect because

it constrains the orientation of the simulated squares. In

Section 4.1, we extend our 1 × n parsimonious proof to

obtain NP/#P/ASP-completeness for signed and unsigned

edge matching with equilateral triangles, with or without

reflection.

For right isosceles triangles, there are two natural “1×n”

arrangements. For clarity, we assume the legs of the trian-

gles have length 1. If we still want a height-1 tiling, then

length-
√

2 hypotenuses are forced to match, so matching

is NP/#P/ASP-complete by simulation of squares. But if

we ask for a height-
√
2
2 tiling, so only legs match, we show

in Section 4.2 that, surprisingly, both signed and unsigned

edge matching can be solved in polynomial time using an

algorithm based on Eulerian paths. Nonetheless, the latter

problems are still #P-complete.

Shapeless edge matching.

In Section 5, we prove that square-tile edge-matching puz-

zles remain NP/#P/ASP-complete when the goal is to con-

*1 This terminology naturally generalizes “parsimonious” (c = 1),
and was introduced in an MIT class in 2014 [9].
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nect all tiles in any (unspecified) single connected shape,

with either signed or unsigned compatibility. For #P- and

ASP-completeness, we need to give one tile a fixed position

in the plane (translation and rotation) to make the number

of solutions finite. The proof builds a unique spiral frame

that effectively forces a 1 × n edge-matching puzzle with a

fixed left boundary color.

2-player edge matching.

In Section 6, we consider natural 2-player variants of 1×n
edge-matching puzzles, where the left boundary edge of the

rectangle has a prespecified color, players alternate placing a

tile in the leftmost empty cell that matches the edge color to

the left, and the first player unable to move loses (normal

play). We prove PSPACE-completeness for four variants

of this problem: both signed and unsigned square-tile edge

matching, and both when players can play any remaining

tile from a shared pool (impartial) and when players play

from separate pools of tiles (partizan).

1.3 Our Results: Not Edge Matching

Along the way to proving our results on edge matching,

we derive other results of possible independent interest in

graph algorithms/complexity.

Hamiltonicity parsimony.

In Section 3.1, we prove #P- and ASP-completeness of

the Hamiltonian cycle problem in planar 3-regular directed

graphs, by modifying the clause gadget of Plesńık’s NP -

hardness proof [23] and parsimoniously reducing from 1-in-

3SAT instead of 3SAT. Previous work showed the analo-

gous undirected problem ASP-complete (and #P-complete)

in planar graphs of maximum degree 3 [25]. We also prove

#P- and ASP-completeness of the Hamiltonian path prob-

lem with specified start and end vertices in planar 3-regular

directed graphs.

Antidirected Eulerian paths.

In Section 4.2.1, we characterize when a directed graph

admits an antidirected Eulerian path [4], [13], [31], that

is, a path*2 that alternates between going forward and go-

ing backward along directed edges and visits every edge (in

either direction) exactly once. (Such directed graphs are

called aneulerian [4], [13], [31].) Specifically, we show how

to reduce this problem to finding an Eulerian path in a mod-

ified graph, enabling solution in linear time. Although an-

tidirected Eulerian paths were introduced over 50 years ago

[4], their existence does not seem to have been characterized

before our work and a recent independent discovery [1].

Forbidden-transition Eulerian paths.

In Section 4.2.2, we give linear-time algorithms to find

Eulerian paths or antidirected Eulerian paths when certain

monochromatic edge-to-edge transitions are forbidden, ex-

tending past work by Kotzig [20] to be algorithmic (and to

*2 Throughout this paper, we follow the half-standard termi-
nology that paths and cycles are allowed to repeat vertices
and/or edges (though we will rarely allow repeated edges). In
a different half-standard terminology, these notions are called
“walks/trails” and “circuits”. If a path or cycle makes no such
repetitions, it is called simple.

Graph Partizan Geography Complexity
undirected vertex vertex polynomial
undirected vertex edge polynomial
undirected edge vertex PSPACE-complete
undirected edge edge PSPACE-complete
directed vertex vertex PSPACE-complete
directed vertex edge PSPACE-complete
directed edge vertex PSPACE-complete
directed edge edge PSPACE-complete

Table 2: Partizan geography results

the antidirected case). Specifically, each vertex can define a

partition of its incident edges into groups, and the problem

forbids the Eulerian path from passing through the vertex

via two edges from the same group.

Partizan Geography game.

We introduce eight new partizan variants of Geogra-

phy where the two players have different available moves,

and characterize their complexity. Specifically, in vertex-

partizan geography, vertices have two different colors, and

each player can only move to vertices of their color; while

in edge-partizan geography, edges have two different colors,

and each player can only move along edges of their color.

We can consider either variant for both Vertex and Edge

Geography (where respectively vertices and edges cannot be

repeated by either player), and in directed or undirected

graphs, resulting in eight possible variants. Table 2 summa-

rizes our results from Section 6.1, which prove every variant

either polynomial or PSPACE-complete.

2. Edge Matching with Inequalities

In this section, we analyze the complexity of the following

problems:

Definition 2.1. m × n <-compatible edge matching

is the following problem:

Instance: mn unit-square tiles, where each tile is defined

by four numbers, one for each side. We use a
b

�
d
c to represent

a unit-square tile with numbers a, b, c, d.

Question: Can the mn tiles cover an m × n rectangle

such that

• for every two horizontally adjacent tiles, the left tile’s

right number is strictly less than the right tile’s left

number; and

• for every two vertically adjacent tiles, the top tile’s bot-

tom number is strictly less than the bottom tile’s top

number?

The related problem ≤-compatible edge matching is

defined similarly, except that we do not require strict in-

equalities among the numbers.

2.1 Polynomial-Time Algorithm for ≤-

Compatible Edge Matching

Theorem 2.1. m × n ≤-compatible edge-matching puz-

zles are always solvable and a solution can be found in

O(mn log(mn)) time.

Proof. Rotate each tile A
B

�
D

C such that A ≥ C and B ≥ D.

© 1992 Information Processing Society of Japan 3



Journal of Information Processing Vol.0 1–23 (??? 1992)

Then sort the tiles in ascending order by D and place them

in the board in row-major order. Because B ≥ D, sorting

by D ensures all tiles are vertically ≤-compatible. Then

sort the tiles in each row in ascending order by C. Because

A ≥ C, sorting by C ensures all tiles in the row are horizon-

tally ≤-compatible. Being both vertically and horizontally

≤-compatible, this is a compatible tiling. This algorithm

runs in O(mn log(mn)) time from the sorting.

The following special cases of the m × n <-compatible

edge-matching puzzles are tractable:

Corollary 2.2. m × n <-compatible edge-matching puz-

zles in which all edge labels are distinct are always solvable

and a solution can be found in polynomial time.

Theorem 2.3. 1× n <-compatible edge-matching puzzles

in which every tile has at least one pair of parallel sides

with unequal labels are always solvable and a solution can

be found in polynomial time.

Proof. Rotate each tile A
B

�
D

C such that A > C. If there are

two pairs of unequal parallel sides, then choose arbitrarily.

Now sort all tiles in ascending order by A, breaking ties ar-

bitrarily, and place them in the board in row-major order.

Let Ai and Ci be the left and right numbers of tile i. From

sorting, we know that Ai ≤ Ai+1, and from our rotation of

the tiles, we know that Ci < Ai. Composing the inequalities

gives Ci < Ai+1, which is the <-compatibility condition, so

this is a compatible tiling.

2.2 NP-hardness of 1 × n <-Compatible Edge

Matching

To show NP-hardness of <-compatible edge matching, we

start from the known NP-hard problem N3P-3SAT-2P-E1N

[11] defined in Section 2.2.1. In Section 2.2.2, we reduce

N3P-3SAT-2P-E1N to a novel variant literal-matching N3P-

3SAT-2P-E1N. In Section 2.2.3, we reduce literal-matching

N3P-3SAT-2P-E1N to a new problem called Interval-Pair

Cover, which implies NP-hardness of 1 × n <-compatible

edge matching.

2.2.1 N3P-3SAT-2P-E1N

Our starting point is the following variant of SAT (named

to follow notation from [12]):

Definition 2.2. An instance of N3P-3SAT-2P-E1N is

an instance of 3SAT, consisting of n variables x1, x2, . . . , xn

and m clauses each with at most three literals, where each

literal is of the form xi (positive) or ¬xi (negative), satisfy-

ing the following constraints:

( 1 ) N3P : Every clause has at least one negative literal (i.e.,

no clause has three positive literals).

( 2 ) 2P : Every variable xi appears in at most two positive

literals xi.

( 3 ) E1N : Every variable xi appears in exactly one negative

literal ¬xi.
Ding et al. [11] proved that N3P-3SAT-2P-E1N is NP-

complete. In fact, they proved NP-completeness of a slightly

more general problem, N3P-3SAT-3-1N, which constrains

𝑥𝑥1 ∨ 𝑥𝑥5 ∨ ¬𝑥𝑥7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥5 ∧ 𝑥𝑥3 ∨ 𝑥𝑥5 ∨ ¬𝑥𝑥7

𝑥𝑥5

¬𝑥𝑥7

𝑥𝑥5
𝑥𝑥3

𝑥𝑥5

(a) 3SAT formula

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑥𝑥7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥5 ∧ 𝑥𝑥3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7
𝑥𝑥3

𝑥𝑥7

𝑥𝑥5

(b) N3P-3SAT-2P-1N formula

Fig. 2: Shared-literal graph: two examples.

each variable to appear in at most three literals, at most

one of which is negative. But any variable with zero neg-

ative occurrences can be eliminated (setting it to true), so

by repeated application of this process, we attain the E1N

property. Because each variable appears in at most three

literals, at most two of them are positive, so we also have

the 2P property. Thus we reduce N3P-3SAT-3-1N to N3P-

3SAT-2P-E1N.

2.2.2 Reduction from N3P-3SAT-2P-E1N to

literal-matching N3P-3SAT-2P-E1N

Define the shared-literal graph of a 3SAT instance to

have one vertex for each clause, and connect two clauses

by an edge for each literal these share, as shown in Fig. 2.

For a N3P-3SAT-2P-E1N instance, the shared-literal graph

has two additional properties. By the E1N constraint, ev-

ery edge corresponds to a shared positive literal. By the 2P

property, the shared-literal graph has maximum degree 2.

We will show that we can in fact reduce the shared-literal

graph to maximum degree 1.

Definition 2.3. A literal-matching N3P-3SAT-2P-

E1N instance is an instance of N3P-3SAT-2P-E1N whose

shared-literal graph is a matching.

Theorem 2.4. Literal-matching N3P-3SAT-2P-E1N is

NP-complete.

Proof. Trivially, literal-matching N3P-3SAT-2P-E1N ∈
NP. We reduce N3P-3SAT-2P-E1N to literal-matching N3P-

3SAT-2P-E1N to show literal-matching N3P-3SAT-2P-E1N

is NP-hard. Refer to Fig. 3.

First we orient the shared-literal graph to have maximum

indegree and maximum outdegree 1. Because the shared-

literal graph is maximum degree 2, every connected compo-

nent is either a path or a cycle. Direct each path from one

end to the other, and direct each cycle cyclically.

Reduction: For each edge (c, d) in the directed shared-

literal graph, corresponding to a shared literal xi, replace

the occurrence of xi in d with a new helper variable hi. Ad-

ditionally, create a new helper clause ¬hi∨xi, i.e., hi ⇒ xi.

This reduction conserves occurrences of the original (non-

helper) variables, and each helper variable appears positively

© 1992 Information Processing Society of Japan 4
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𝑥𝑥3

𝑥𝑥7

𝑥𝑥5
¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑥𝑥7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥5 ∧ 𝑥𝑥3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

(a) Oriented N3P-3SAT-2P-E1N instance from Fig. 2b

𝑥𝑥3𝑥𝑥7𝑥𝑥5

∧ ¬𝑦𝑦7 ∨ 𝑥𝑥7 ∧ ¬𝑦𝑦5 ∨ 𝑥𝑥5 ∧ ¬𝑦𝑦3 ∨ 𝑥𝑥3

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑦𝑦7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦5 ∧ 𝑦𝑦3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

(b) Reduced literal-matching N3P-3SAT-2P-E1N instance

Fig. 3: Reduction from N3P-3SAT-2P-E1N to literal-

matching N3P-3SAT-2P-E1N of Theorem 2.4.

once (replacing some xi in an original clause) and negatively

once (in the helper clause), so the transformed formula is

still N3P-3SAT-2P-E1N.

The transformed formula is satisfiable under an aug-

mented truth assignment σX,H = σX ∪ σH if and only if

the original formula is satisfiable under σX . If hi satisfies

an original clause (by being true), the helper clause ensures

that xi is also true. If xi is false, the helper clause ensures

that hi is also false, and so cannot satisfy the original clause

it is a member of. Thus if σX,H satisfies the transformed

formula, σX satisfies the original formula. Variable hi can

be false when xi is true, but as xi already satisfies hi’s

helper clause and hi always appears positively in its origi-

nal clause, such an assignment cannot satisfy more clauses

than if hi were true. Thus if σX satisfies the original for-

mula, σX,H = σX∪{hi = σX(xi)} satisfies the transformed

formula.

After replacing the occurrence of xi in clause d, each edge

(c, d) in the original formula’s directed shared-literal graph

corresponds to an edge between c and the helper clause con-

taining xi in the transformed formula’s shared-literal graph,

so original clauses have a degree of at most 1. Each helper

variable appears only once in each polarity, so helper vari-

ables do not give rise to edges in the shared-literal graph.

Thus all helper clauses have degree 1. The transformed

formula’s shared-literal graph thus has maximum degree 1,

meaning that it is a matching.

2.2.3 Reduction from literal-matching N3P-

3SAT-2P-E1N to Interval-Pair Cover

To begin, we define a new problem Interval-Pair Cover;

refer to Fig. 4.

Definition 2.4. Interval-pair cover is the following

problem:

Instance: A universe U = {1, 2, . . . , n} and m pairs of

closed intervals ([ai, bi], [ci, di]) for

i = 1, 2, . . . ,m. Here ai, bi, ci, di ∈ U , ai ≤ bi, and ci ≤ di.

1 2 3 4 5 6 7 8 9

(a) Input

1 2 3 4 5 6 7 8 9

(b) Solution

Fig. 4: Interval-Pair Cover: sample input and solution. The

two intervals in the same pair are colored the same and share

the same y coordinate.

Question: Is there a choice of one interval from each pair

such that every i ∈ U is covered by some chosen interval?

Theorem 2.5. Interval-Pair Cover is NP-complete, even

when every interval pair ([aj , bj ], [cj , dj ]) satisfies aj = bj

and dj − cj ∈ {0, 1}.

Proof. We reduce from literal-matching N3P-3SAT-2P-

E1N; refer to Fig. 5. We draw the shared-literal graph on

the integer line from 1 through n, placing the vertices at

integer coordinates and using unit-length edges. This is al-

ways possible because the shared-literal graph is a matching.

Then we create an interval pair for each variable xi. The

pair’s first interval contains only the coordinate of the vertex

representing the clause where xi appears negatively; by the

E1N property, there is exactly one such vertex. The pair’s

second interval contains only the coordinate(s) of the vertex

or vertices representing the clause(s) where xi appears pos-

itively; by the 2P property, there are at most two, and they

are adjacent on the line because they share an edge in the

shared-literal graph. If xi does not appear positively, we set

the second interval equal to the first interval.

The produced Interval-Pair Cover instance has a solu-

tion if and only if the input literal-matching N3P-3SAT-2P-

E1N instance is satisfiable. Given a satisfying truth assign-

ment, from the interval pair corresponding to variable xi, we

choose the first interval if xi is assigned false and the second

interval if xi is assigned true. Each chosen interval covers the

coordinate(s) of the clause vertices satisfied by xi, so if the

truth assignment satisfies the formula, the chosen intervals

cover all integers in the universe. Given a complete interval

cover, we assign true to xi if the second interval was chosen

from its corresponding pair and false if the first interval was

chosen. By the same interval-variable correspondence, if the

intervals cover all integers in the universe, the constructed

truth assignment satisfies the formula.

2.2.4 Reduction from Interval-Pair Cover to 1×n

<-Compatible Edge Matching

Theorem 2.6. 1× n <-compatible edge matching is NP-

complete.

© 1992 Information Processing Society of Japan 5
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𝑥𝑥3𝑥𝑥7𝑥𝑥5

∧ ¬𝑦𝑦7 ∨ 𝑥𝑥7 ∧ ¬𝑦𝑦5 ∨ 𝑥𝑥5 ∧ ¬𝑦𝑦3 ∨ 𝑥𝑥3

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑦𝑦7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦5 ∧ 𝑦𝑦3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

(a) Literal-matching N3P-3SAT-2P-E1N instance

𝑥𝑥3 𝑥𝑥7𝑥𝑥5
∧ ¬𝑦𝑦5 ∨ 𝑥𝑥5 ∧ ¬𝑦𝑦3 ∨ 𝑥𝑥3 ∧ ¬𝑦𝑦7 ∨ 𝑥𝑥7

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑦𝑦7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦5 ∧ 𝑦𝑦3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

(b) Short drawing

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑦𝑦7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦5 ∧ 𝑦𝑦3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

𝑥𝑥3 𝑥𝑥7𝑥𝑥5
∧ ¬𝑦𝑦5 ∨ 𝑥𝑥5 ∧ ¬𝑦𝑦3 ∨ 𝑥𝑥3 ∧ ¬𝑦𝑦7 ∨ 𝑥𝑥7

¬𝑥𝑥2
𝑥𝑥5

¬𝑥𝑥1
𝑥𝑥3 𝑥𝑥7

¬𝑥𝑥4

𝑦𝑦5¬𝑦𝑦5 𝑦𝑦3¬𝑦𝑦3𝑦𝑦7 ¬𝑦𝑦7

(c) Interval-pair cover instance

¬𝑥𝑥2 ∨ 𝑥𝑥5 ∨ 𝑦𝑦7 ∧ ¬𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑦𝑦5 ∧ 𝑦𝑦3 ∨ ¬𝑥𝑥4 ∨ 𝑥𝑥7

𝑥𝑥3 𝑥𝑥7𝑥𝑥5
∧ ¬𝑦𝑦5 ∨ 𝑥𝑥5 ∧ ¬𝑦𝑦3 ∨ 𝑥𝑥3 ∧ ¬𝑦𝑦7 ∨ 𝑥𝑥7
𝑥𝑥5

¬𝑥𝑥1
𝑥𝑥3 𝑥𝑥7
𝑦𝑦5¬𝑦𝑦5 𝑦𝑦3¬𝑦𝑦3𝑦𝑦7 ¬𝑦𝑦7

¬𝑥𝑥2 ¬𝑥𝑥4

(d) Solution

Fig. 5: Reduction from literal-matching N3P-3SAT-2P-E1N

to Interval-Pair Cover of Theorem 2.5.

Proof. We reduce from Interval-Pair Cover. For each inte-

ger i in the Interval-Pair Cover universe {1, 2, . . . , n}, we

create two copies of the element tile i
i

�
i
i. For each in-

terval pair ([aj , bj ], [cj , dj ]), we create an interval-pair tile

aj−1
cj−1

�
dj+1

bj+1. The edge-matching board is 1 × (2n + m),

where n is the size of the universe and m is the number of

interval pairs.

Given a solution to the produced edge-matching instance,

we can construct a solution to Interval-Pair Cover by choos-

ing each interval tile’s horizontally-oriented interval (e.g.,

the interval [aj , bj ] for a tile oriented as aj−1
cj−1

�
dj+1

bj+1 or as

bj+1
dj+1

�
cj−1

aj−1). Suppose for contradiction that an element i

is uncovered by every chosen interval. Then in every placed

tile whose left edge is at least i+ 1, its right edge is at least

i, so the left edge of the next tile is at least i + 1. In the

sequence of left edges of tiles, the left edge of the tile after

the first copy of i
i

�
i
i is at least i + 1, so every following left

edge is at least i + 1, leaving no place for the second copy

of i
i

�
i
i.

Given a solution to Interval-Pair Cover, we can construct

a solution to the produced edge-matching instance. We will

first describe a solution that uses extra copies of i
i

�
i
i. For

each chosen interval [aj , bj ], orient the tile as bj+1
dj+1

�
cj−1

aj−1,

and attach to its right aj

aj

�
aj

aj , . . . , bj

bj
�
bj

bj to get a sequence

of tiles with left edge bj + 1 and right edge bj . For each

i ∈ {1, 2, . . . , n}, place the tile i
i

�
i
i followed by any of the

above sequences of tiles with left edge i + 1 and right edge

i. This solution uses as many copies of i
i

�
i
i as the number

of intervals that cover i, plus 1, which is at least two. We

can remove any i
i

�
i
i and leave a valid solution, so arbitrarily

removing copies until there are two copies of each i
i

�
i
i left

leaves a solution to the edge-matching instance.

3. 1 × n Edge Matching ASP/#P-

completeness

In this section, we adapt the work of [7] to show that 1×n
edge-matching puzzles are ASP- and #P-complete. Like

[7], we reduce from Hamiltonian path in planar 3-regular

directed graphs, which we newly prove ASP- and #P-

complete.

3.1 Directed Hamiltonicity ASP/#P-

completeness

Seta’s thesis [25] proves ASP-completeness for Hamil-

tonicity in planar maximum-degree-3 undirected graphs.

Here we prove the analogous result for directed graphs:

Theorem 3.1. Finding Hamiltonian cycles in a planar 3-

regular directed graph with maximum indegree 2 and max-

imum outdegree 2 is ASP-complete, and counting Hamil-

tonian cycles in those graphs is #P-complete.

Proof. These problems are clearly in FNP and #P respec-

tively. To prove hardness, we give a parsimonious reduc-

tion from (planar) positive 1-in-3SAT, which is known to

be ASP-complete and #P-complete [19].*3 Our reduction is

patterned after Plesńık’s NP-hardness reduction from 3SAT

for Hamiltonian cycle in this class of graphs [23]. Plesńık’s

reduction does not conserve the number of solutions because

the clause gadget admits multiple solutions when multiple

literals in the clause are satisfied (Fig. 9a). Reducing from

1-in-3SAT and simplifying Plesńık’s clause gadget allows us

to conserve the number of solutions, and reducing from posi-

tive 1-in-3SAT (no negated literals) allows us to simplify the

clause gadget. Plesńık’s exclusive-or gadget and exclusive-

or crossover gadget do not give rise to additional solutions,

*3 Our proof does not actually use the planarity of the 1-in-3SAT
instance. To avoid the exclusive-or crossover gadget, we would
need the variable-clause graph to remain planar with a line
through all of the variables and all of the clauses, a variant not
known hard [12].
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Fig. 6: A full Hamiltonicity instance produced by our re-

duction, with variable gadgets on the right (heading down)

and clause gadgets on the left (heading up). Variables and

clauses are connected by exclusive-or lines (the green lines

with hollow endpoints) as defined in Fig. 7, with crossings

expanded as in Fig. 8.

so they can be used without modification.

Fig. 6 shows a full Hamiltonicity instance produced by

our reduction, with variable gadgets on the right (heading

down) and clause gadgets on the left (heading up), and vari-

ables and clauses connected by exclusive-or lines (the green

lines with hollow endpoints) which may cross. (Compare

[23], Figure 1, in which Plesńık has abbreviated the clause

gadgets.)

Fig. 7: Our notation for an exclusive-or line between two

edges and its expansion into additional vertices and edges.

(Redrawing of [23], Figure 4.)

Fig. 8: Expansion of an exclusive-or line that crosses an-

other exclusive-or line. (Based on [23], Figure 5, simplified

to show only two lines crossing.)

Exclusive-or line.

An exclusive-or line between two edges abbreviates the

pattern of additional vertices and edges shown in Fig. 7.

Traversing either of the two edges covers all of the additional

vertices in exactly one way, excluding the other original edge

from the cycle. Traversing a path not corresponding to one

of the original edges (e.g., from the bottom left to bottom

right in Fig. 7) prevents the center four vertices from being

part of any cycle (either they are uncovered, or they are the

last four vertices in the path, so the path is not a cycle). If

neither of the two original edges is used, all of the additional

vertices are uncovered.

Exclusive-or crossover.

Exclusive-or lines connecting variable gadgets to clause

gadgets may cross, necessitating the exclusive-or crossover

shown in Fig. 8. The crossover works by splitting each

© 1992 Information Processing Society of Japan 7
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crossed-over edge between one pair of original edges into

two edges and adding new exclusive-or lines that guarantee

the parity of these paired edges is the same throughout the

gadget. For example, in Fig. 8, if the top edge is in the cycle,

then the top edge of each pair is also in the cycle and the

bottom edge is not in the cycle, regardless of which of the

left or right edges are in the cycle. As before, the expansion

can be traversed in exactly one way for each pair of origi-

nal edges traversed, and a traversal not corresponding to an

original edge leaves some vertices uncovered.

Variable gadget.

The variable gadget is a pair of vertices connected by a

pair of parallel edges.*4 The edge on the interior face of

the variable-clause cycle is connected by exclusive-or lines

to each clause in which the variable appears. Including this

edge in the Hamiltonian cycle represents setting the vari-

able to true. The other edge of the variable gadget is not

connected to anything and represents setting the variable to

false. The variable gadgets are connected in sequence.

Plesńık’s variable gadget used two pairs of parallel edges,

connected on the exterior by an exclusive-or line such that

they have opposite settings, with the second pair connected

to clauses where the variable appeared as a negative literal.

We reduce from planar positive 1-in-3SAT, so all literals in

our clauses are positive, making the second pair unnecessary.

Clause gadget.

Our clause gadget and its three Hamiltonian paths are

shown in Fig. 9b. The three rightmost edges in the clause

gadget are connected by exclusive-or lines to the variable

gadgets corresponding to the variables appearing in this

clause. If a variable is set to true, then the rightmost edge

connected to that variable gadget cannot be in the cycle;

otherwise, the rightmost edge must be in the cycle. If ex-

actly one of the three variables is true, then the clause gadget

can be covered in exactly one way (using one of the paths

shown in Fig. 9b). If a variable is true, the path must go to

the left of that hexagon, where it must enter the left loop. If

the path leaves the left loop before visiting all vertices in it,

it cannot visit the top vertex of the hexagon where it entered

the loop, so the left loop must be covered in its entirety. But

then the path cannot go left in any other hexagon, so the

other variable must be false. If all variables are false, the left

loop is uncovered. Thus this gadget simulates a 1-in-3SAT

clause.

Our clause gadget differs from Plesńık’s by the deletion of

the “bridges” between the hexagons and the left loop. The

bridges allowed multiple literals to be simultaneously true,

which was necessary for Plesńık’s reduction (from 3SAT),

but not desired for our reduction from 1-in-3SAT.

Conclusion.

Fig. 6 shows a full instance produced by our reduction.

For each satisfying assignment of the variables, there is one

*4 The graph is a simple graph, not a multigraph: If we remove
any variables not used in any clauses, then for each variable,
one of these edges will be replaced by an exclusive-or gadget,
leaving no parallel edges.

corresponding Hamiltonian cycle using the corresponding

configuration of the variable gadgets and the unique sat-

isfying path through each clause gadget. Conversely, a sat-

isfying assignment can be uniquely read off from each Hamil-

tonian cycle based on the configuration of the variable gad-

gets.

Theorem 3.2. Finding Hamiltonian paths, with or with-

out given start vertex s and/or end vertex t, in planar 3-

regular directed graphs with maximum indegree 2 and max-

imum outdegree 2 is ASP-complete, and counting Hamil-

tonian paths in those graphs is #P-complete. The same

result holds when the given vertex s has outdegree 1 and

the given vertex t has indegree 1.

Proof. We prove this result via a parsimonious reduction

from Hamiltonian cycle in planar 3-regular graphs with max-

imum indegree and outdegree 2. Given a 3-regular directed

graph, we find an edge uv that must be in every Hamilto-

nian cycle (an outgoing edge from a vertex with indegree 2,

or an incoming edge to a vertex with outdegree 2). We split

uv, introducing two degree-1 vertices but otherwise leaving

the graph 3-regular.

To restore 3-regularity we replace the degree-1 vertices

with the graphs shown in Fig. 10. The unique longest (sim-

ple) path entering the graph in Fig. 10b ends at the vertex

labeled t, because the first three vertices have outdegree 1

and the other successor of the fourth vertex is already in the

path. By a similar argument working backwards from the

outgoing edge of the graph in Fig. 10a, the unique longest

path leaving the graph starts at the vertex labeled s. Thus,

whether or not s and t are specified as the start and end

vertices in the Hamiltonian path instance, all Hamiltonian

paths in the transformed graph start at s and end at t. Ver-

tex s has outdegree 1 and t has indegree 1, as claimed in

the theorem statement. Because uv occurs in every Hamil-

tonian cycle of the input graph, there is a bijection between

Hamiltonian cycles in the input instance and Hamiltonian

paths in the output instance, and this bijection can be com-

puted in polynomial time by replacing uv with the unique

paths in the start/end gadgets or vice versa.

3.2 Reduction from Hamiltonicity to 1 × n Edge

Matching

The symmetry of 1 × n edge-matching puzzles is prob-

lematic for ASP-hardness. Because rotating any solution by

180◦ will give another solution, the answer to the ASP prob-

lem is always ‘yes’. To avoid this trivial additional solution,

we consider the version of 1×n edge-matching puzzles where

the left boundary edge’s color is specified. This breaks the

rotational symmetry, and we will show that this problem is

ASP-complete through a parsimonious reduction. Without

this restriction, our reduction is 2-monious, so we show #P-

hardness even for 1× n edge-matching puzzles without any

such restriction.

The reduction in [7] that establishes NP-hardness of

1× n edge-matching puzzles is not parsimonious because of
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(a) The three Hamiltonian paths through Plesńık’s clause gadget [23], Fig. 2 when all three literals are true. (The right edge of each
hexagon is covered via the exclusive-or line from the variable gadget.)

(b) The three Hamiltonian paths through our modified clause gadget. The right edges of two of the three hexagons are always used, so
this is a 1-in-3SAT clause.

Fig. 9: Comparison of Plesńık’s clause gadget and our modified clause gadget.

(a) 3-regular start
vertex gadget

(b) 3-regular end
vertex gadget

Fig. 10: Gadgets that replace degree-1 start or end vertices

to restore 3-regularity to the overall graph while maintain-

ing a unique Hamiltonian path. Vertices s and t are the new

start and end vertices.

garbage collection. Namely, the tiles corresponding to edges

which are not part of the Hamiltonian path are placed at the

end of the row of tiles in an arbitrary order. Our reduction

will instead place these unused tiles near the corresponding

vertex tiles so that there is only one tile sequence corre-

sponding to each Hamiltonian path.

Theorem 3.3. 1 × n signed and unsigned edge-matching

puzzles with the left boundary edge color specified are ASP-

complete and #P-complete.

Proof. Clearly this problem is in FNP and its counting

problem is in #P. To show hardness, we present a parsimo-

nious reduction from Hamiltonian path in 3-regular directed

graphs, adapted from the reduction in [7].

Given a 3-regular directed graph G with specified vertices

s and t, we construct a 1 × n signed edge-matching puzzle

as follows. (For the unsigned case, we will simply remove

all signs.) For each edge e in G, we have a color e, and for
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each vertex v we have three colors vI , vO, and vX . For each

vertex v, we build three tiles; refer to Fig. 11. In one case,

v has one edge e1 coming in and two edges e2 and e3 going

out. Then we construct the following tiles:

+e1

−vX

�
−vX

−vI , +vO

−vO

�
+vI

−e2, and +vO

−vO

�
+vI

−e3.

In the other case, v has two edges e1 and e2 coming in and

one edge e3 going out. Then we construct the following tiles:

+e1

+vI

�
−vO

−vI , +e2

+vI

�
−vO

−vI , and +vO

−vX

�
−vX

−e3.

Each of these tiles corresponds to one of the half-edges inci-

dent to v. (Overall, each edge is represented by two half-edge

tiles.) We use the properties that s has outdegree 1 and t

has indegree 1, as provided by Theorem 3.2. We remove the

tiles corresponding to the half-edges entering s and the tiles

corresponding to half-edges leaving t, so s and t each have

only one corresponding tile. Finally, we specify that the left

boundary edge has color −sO.

We claim that the number of solutions to this edge-

matching puzzle is the same as the number of Hamiltonian

paths in G from s to t.

First suppose that we have such a Hamiltonian path

s = v1, v2, . . . , v|V | = t. We can construct a solution to

the edge-matching puzzle by placing the three tiles for each

vertex vi consecutively, in the order i = 1, 2, . . . , |V | that the

vertices appear in the path. As in the bottom of Fig. 11, we

place the three tiles for each vertex vi so that the tiles corre-

sponding to the edges ei = (vi−1, vi) and ei+1 = (vi, vi+1)

that the path uses to enter and exit v are respectively first

and last so that the sequence of colors is ei, vi,I , vi,O, ei+1.

The exposed colors are +ei on the left and −ei+1 on the

right, so the these placed triples of tiles match up at their

ends (because the sequence of vertices is a path). There is

only one tile for each of s and t, which we place at the be-

ginning and end. The left boundary color is then +sO, as

required, and the rightmost boundary color is +tI .

Next we show that every solution to the edge-matching

puzzle has this form, and thus corresponds to a Hamilto-

nian path. Suppose we have a solution to the edge-matching

puzzle. Because the left boundary color is −sO, the tile cor-

responding to s must be placed on the left oriented with

+sO on the left and the outgoing edge color on the right.

The only tile corresponding to t is +e
−tX
�
−tX
−tI , where e is the

incoming edge. Because colors tX and tI do not appear on

any other tiles, this tile must be placed rightmost with color

+e on the left.

Consider a vertex v other than s and t. None of the tiles

corresponding to v can be at either end of the solution, be-

cause those spaces are claimed by s and t. Suppose v has

indegree 1 and outdegree 2; the other case is similar. Be-

cause +e1

−vX

�
−vX

−vI is the only tile with the color vX , it must

be adjacent to other tiles on the other two sides. The tile

adjacent on the side with color −vI must be one of the two

(a) A vertex with indegree 1 and outdegree 2.

(b) A vertex with indegree 2 and outdegree 1.

Fig. 11: The tiles in the reduction showing ASP- and #P-

hardness of 1×n edge-matching puzzles. At the bottom we

show one possible edge-matching solution corresponding to

one (blue) path through v.

other tiles corresponding to v. Whichever tile it is, its ori-

entation is fixed by matching color vI , so the opposite side

must have color −vO, and therefore the following tile must

be the third tile corresponding to v, with the color of an-

other edge incident to v on the side touching the next tile.

In summary, the three tiles corresponding to v must be con-

secutive, and the two colors they expose to other tiles are

two edges incident to v with different orientations relative to

v, with the local configuration of the three tiles determined

© 1992 Information Processing Society of Japan 10



Journal of Information Processing Vol.0 1–23 (??? 1992)

by those exposed colors.

Suppose the sequence of tiles corresponding to vertex u

are adjacent to the sequence corresponding to vertex v.

Then the side where these sequences touch must have color

e, where e is either (u, v) outgoing from u and incoming to

v or (v, u) outgoing from v and incoming to u. The other

left and right edges of these tiles must also have edge colors

corresponding to edges incident to u and v. By induction,

if the solution has several consecutive sequences of tiles cor-

responding to vertices, the sequence of vertices must form

a path in G in either direction. The entire solution must

therefore be a concatenation of sequences corresponding to

vertices starting with s and ending with t, such that adja-

cent vertices share an edge from left to right, and using each

tile exactly once. Hence the solution must correspond to a

Hamiltonian path.

For each Hamiltonian path, there is exactly one cor-

responding solution to the edge-matching puzzle, because

there is only one way to connect the tiles corresponding to

a vertex for each pair of edges used at that vertex. So there

are the same number of Hamiltonian paths in G from s to

t and solutions to the edge-matching puzzle. Because this

reduction is parsimonious, it shows that 1× n signed edge-

matching puzzles with the color of the left boundary edge

specified is ASP- and #P-complete. The same reduction

with all the signs removed proves the same result for un-

signed edge-matching puzzles.

Corollary 3.4. 1× n signed and unsigned edge-matching

puzzles are #P-complete and their 2-ASP problem is NP-

hard.

Proof. Without a specified left boundary color, we cannot

guarantee that the tile corresponding to the start vertex s is

on the left and the tile corresponding to the end vertex t is on

the right; we only know that they are at the ends. Thus each

solution to the edge-matching puzzle can be rotated 180◦ to

form another solution, so the reduction is 2-monious.

4. Triangular Edge Matching

In this section, we study 1×n edge-matching puzzles with

triangular tiles, specifically, equilateral and right isosceles

triangles. There is one natural interpretation of “1 × n”

for equilateral triangles, as shown in Fig. 12a. However, for

right isosceles triangles, there are two natural interpreta-

tions. If the triangles have legs of length 1, then to pack a

1 × n box they must have alternating hypotenuse/leg con-

tact, which we will simply refer to as hypotenuse contact, as

shown in Fig. 12b. On the other hand, if the triangles have

a height of 1, then they must be packed using only leg-to-leg

contacts, as shown in Fig. 12c.

Hypotenuse-contact right triangles can directly and parsi-

moniously simulate square tiles: for each square create two

triangles whose hypotenuses have a matching, unique color.

(This idea is mentioned in another context in the conclusion

of [7].) Thus NP-completeness, ASP-completeness (with left

(a) Equilateral triangles

(b) Right triangles, hypotenuse contact

(c) Right triangles, leg contact

Fig. 12: Three types of triangular tiles.

boundary specified), and #P-completeness of these puzzles

follows directly from results on square tiles. We devote the

rest of this section to equilateral triangles (Section 4.1) and

right triangles with leg contact (Section 4.2).

4.1 Equilateral-Triangle Edge Matching

In this section, we prove NP/#P/ASP-completeness of

1×n equilateral triangular edge-matching puzzles. We start

with an NP-completeness proof, then augment it and ana-

lyze it further to prove #P/ASP-completeness.

Theorem 4.1. 1 × n signed and unsigned equilateral-

triangle edge-matching puzzles are NP-complete. The same

results hold if we allow tile reflection.

Proof. Clearly these problems are in NP. To show NP-

hardness, we reduce from Hamiltonian path in 3-regular

undirected graphs [17] (in contrast to Section 3 which con-

sidered directed graphs). We describe signed tiles resulting

from our reduction to signed edge matching; for the unsigned

puzzle we will just drop the signs. Similar to the proof of

Theorem 3.3, we will create exactly two tiles per edge; re-

fer to Fig. 13. To assign complementary signs to the edge

colors, arbitrarily orient each edge e (but paths need not fol-

low this orientation). For every vertex v with incident edges

e1, e2, e3, construct three corresponding triangular tiles:

+v4
±e1

−v, +v4
±e2

−v, and +v4
±e3

−v,

where the sign of each ei color is positive if ei was arbi-

trarily oriented to be incoming to v and negative otherwise.

We claim that these tiles have a signed or unsigned edge-

matching solution if and only if the graph has a Hamiltonian

path.

First suppose that there is a Hamiltonian path

v1, v2, . . . , vn. We can construct an edge-matching so-

lution by arranging the three corresponding tiles for each

vertex vi so that {vi−1, vi} is on the left boundary edge

and {vi, vi+1} is on the right boundary edge, as in Fig. 13
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Fig. 13: NP-hardness of 1× n equilateral-triangle edge matching, showing one possible (blue) path through v and the corre-

sponding edge-matching solutions (depending on parity up to this point).

(right, top or bottom according to parity of i as required

by the tiling). The figure illustrates that the vertex colors

match with opposite signs, and that tiles do not need to be

reflected. By the arbitrary orientation of the edges, every

edge color will match with its negated color.

Now suppose that there is an edge-matching solution, even

without the color signs. Without the color signs, the tiles are

reflectionally symmetric, so the following argument works

also when we allow tile reflection. Each vertex color v ap-

pears in exactly three tiles, so the three vertex tiles can

match only with each other, or some of them can appear as

the extreme left or extreme right tile. If any of the three tiles

for v are extreme, then none of the tiles can be placed in the

middle of an edge-matching solution (lacking the three tiles

required to form an 180◦ angle), so in this case, all three tiles

for v appear at the left and right extremes of the solution,

effectively “wrapping around” the 1 × n board. For every

other vertex, the three corresponding tiles must appear to-

gether. Listing all of the vertices in the order in which their

color appears in the solution yields a Hamiltonian path of

the original graph. (If the tiles corresponding to one vertex

wrap around, then this process in fact yields a Hamiltonian

cycle.)

The proof above suggests an alternate approach to prov-

ing Theorem 3.3 about squares: unify the vI , vO, vx colors

into a single color, and reduce from undirected Hamiltonian

path. However, for unsigned colors, the change would make

this reduction nonparsimonious, because it enables the mid-

dle tile to rotate by 180◦ in the two arrangements on the

bottom of Fig. 11. But equilateral triangles lack this ambi-

guity, and we are able to obtain parsimony by a more careful

handling of the start and end.

First we need a slightly different form of undirected Hamil-

tonicity:

Lemma 4.2. Finding Hamiltonian paths, with or with-

out a specified start vertex s and/or end vertex t,

in maximum-degree-3 planar undirected graphs is ASP-

complete, and counting Hamiltonian paths in those graphs

is #P-complete. The same result holds when the given ver-

tices s, t have degree 1.

Proof. We present a parsimonious reduction from Hamil-

tonian cycle in maximum-degree-3 planar undirected graphs

(the same graphs) having at least one vertex of degree 2,

proved ASP-complete by Seta [25]. Our reduction is similar

to the first step in the proof of Theorem 3.2.

Let G be a maximum-degree-3 undirected graph with a

degree-2 vertex v. Let {u, v} be one of v’s incident edges,

which must be in every Hamiltonian cycle. Construct G′

by adding two new vertices s and t, and replacing the edge

{u, v} with edges {s, u} and {t, v}. Because s and t have

degree 1, they are in every Hamiltonian path of G′. Because

edge {u, v} is contained in every Hamiltonian cycle in G′,

there is a direct bijection between Hamiltonian cycles in G

and Hamiltonian (s-t) paths in G′.

Theorem 4.3. 1 × n signed and unsigned equilateral-

triangle edge-matching puzzles with the left boundary edge

color specified are ASP-complete and #P-complete.

Proof. Clearly this problem is in FNP and its counting

problem is in #P. To show hardness, we present a parsimo-

nious reduction from Hamiltonian s-t paths in maximum-

degree-3 undirected graphs where s and t have degree 1,

from Lemma 4.2. Our reduction is a modification of the

NP-hardness reduction in Theorem 4.1 that differs only for

the new case of vertices with degree < 3. For each degree-2

vertex v, we attach a half-edge {v} (with no other endpoint),

and then apply the degree-3 construction from Fig. 13. We

can assume that the only degree-1 vertices are s and t be-

cause no other degree-1 vertices could possibly be reached

by an s-t path (so if there were such a vertex we could

parsimoniously reduce by constructing any unsolvable edge-

matching instance). For the degree-1 vertices s and t, we

construct two corresponding tiles:

s∠ ∠
U

±e1 and ±e2∠ ∠
U

U,

where e1 and e2 represent the unique edges incident to s

and t respectively, with signs chosen for these edge colors

based on our arbitrary orientation of the original graph, in

the same fashion as for all other tiles. (As before, for the un-

signed problem, we just drop the signs.) Each occurrence of
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U represents a unique color not occurring in any other tile.

Finally, we specify the left boundary color to be s, which is

another unique color.

Because the tile corresponding to vertex s is the only one

with color s, it must be placed as the leftmost tile. Because

the tile corresponding to t has two sides with unique colors,

it must be placed as the rightmost tile. As argued in The-

orem 4.1, every triplet of tiles corresponding to a degree-3

(or degree-2) vertex must occur consecutively, because the

s and t tiles prevent “wrapping around”. Therefore every

edge-matching solution induces an ordering of the vertex

tile triplets between the leftmost s tile and the rightmost t

tile. To guarantee a bijection between edge-matching solu-

tions and Hamiltonian s-t paths solutions, it only remains

to show that, given an ordering of the tile triplets, there is

a unique arrangement of the three tiles within each triplet.

Suppose the tile triplet for vertex v occurs between the

triplets for vertices u and w. The only edge colors that v’s

triplet have in common with u’s and w’s triplets are the

colors representing edges {u, v} and {v, w} in the original

graph, so the two tiles in v’s triplet containing the {u, v}
and {v, w} colors must be on the left and right respectively,

with those edges exposed. The remaining tile in the triplet

has no choice but to be oriented between them with its v-

colored edges facing the two other tiles in the triplet, and

its third edge facing the 1× n boundary. Thus the arrange-

ment of tiles within each triplet is uniquely defined by the

ordering of tile triplets along the box, completing the proof

that our reduction is parsimonious.

Corollary 4.4. 1 × n signed and unsigned equilateral-

triangle edge-matching puzzles are #P-complete and their

2-ASP problem is NP-hard.

Proof. As in Corollary 3.4.

4.2 Leg-Contact Right-Isosceles-Triangle Edge

Matching

In this section, we show that edge matching with right

isosceles triangles that tile a 1 × n box by leg contact (as

in Fig. 12c) is closely related to finding an Eulerian path in

a graph. More precisely, we show relations to two variants,

called antidirected and forbidden-transition Eulerian paths,

which we define and analyze in Sections 4.2.1 and 4.2.2 re-

spectively. We use this connection to show that these puz-

zles can be solved in polynomial time (Section 4.2.3), and

then to show that counting solutions to these puzzles is #P-

complete (Section 4.2.4).

4.2.1 Antidirected Eulerian Path Characteriza-

tion

Consider a directed graph G. Recall that a (directed)

Eulerian path is a directed path in G (respecting the edge

directions in G) that visits every edge in G exactly once.

It is well-known that a connected graph has such a path

if and only if it has zero or two vertices of odd degree [6],

Corollary 4.1, and in this case the path can be constructed

in linear time [14].

Here we analyze the variant where the edge directions ofG

must alternate. Precisely, an antidirected path [2], [4], [18]

is a sequence of edges where every pair of consecutive edges

share an endpoint (an undirected path) and furthermore

those edges either both point toward or both point away

from that shared endpoint. In other words, an antidirected

path alternates between following an edge of G in the “for-

wards” direction and following an edge of G in the “back-

wards” direction, with an arbitrary starting parity. An an-

tidirected Eulerian path [4], [13], [31] of G is an antidi-

rected path of G that visits every edge (either forwards or

backwards) exactly once. Examples of past results on this

topic include that a directed graph without degree-2 ver-

tices has an odd number of Eulerian paths if and only if it

is 4-regular and has an antidirected Eulerian path [4], while

not every connected 4-regular undirected graph with an odd

cycle has an orientation admitting an antidirected Eulerian

path [31].

In the [antidirected] Eulerian path problem , we are

given a directed graph G, and want to know whether G has

an [antidirected] Eulerian path, and if it does, to find one.

We relate these two problems as follows:

Theorem 4.5. The antidirected Eulerian path problem

can be reduced in linear time to the Eulerian path prob-

lem.

Proof. Let G be a directed graph input for the antidirected

Eulerian path problem. Construct an undirected bipartite

graph G′ (called the “split” of G by West [28], Definition

1.4.20) as follows; refer to Fig. 14. For each vertex v ∈ G,

construct two vertices v+ and v− in G′. For every directed

edge e = (u, v) ∈ G, add the undirected edge e′ = {u+, v−}
to G′. Because every edge in G′ connects a plus vertex to a

minus vertex, G′ is bipartite.

We claim that paths in G′ correspond to antidirected

paths in G. For any path p′ = (v±1 , v
∓
2 , v

±
3 , v

∓
4 , . . . ) in G′

(where signs alternate by bipartiteness), consider mapping

each edge of the form {v+i , v
−
i+1} in p′ to the corresponding

edge (vi, vi+1) of G, and mapping each edge of the form

{v−i , v
+
i+1} in p′ to the (backwards traversal of) the corre-

sponding edge (vi+1, vi) of G. Then we obtain an antidi-

rected path in G. Because the mapping between edges of G

and G′ is a bijection, so is this transformation. By the same

bijectivity, if p′ is Eulerian, then so is p. Therefore Eule-

rian paths in G′ correspond to antidirected Eulerian paths

in G.

A similar result was obtained independently in [1].

For our application to edge matching, we will need to solve

a slightly restricted version of the problem:

Corollary 4.6. The antidirected Eulerian path problem

can be solved in linear time. The same result holds if the

path is further restricted to start and/or end with a speci-

fied direction (forwards or backwards).

Proof. The first sentence follows from the reduction of The-

orem 4.5 combined with linear-time algorithms for finding

© 1992 Information Processing Society of Japan 13



Journal of Information Processing Vol.0 1–23 (??? 1992)

Fig. 14: Reduction from antidirected Eulerian path to Eulerian path.

Eulerian paths [14].

Now suppose we are given the starting and ending direc-

tions s, t ∈ {forwards, backwards} for an antidirected Eule-

rian path. Applying the previous algorithm, we can detect

whether G has any antidirected Eulerian path, i.e., whether

G′ from the proof of Theorem 4.5 has any Eulerian path.

If the answer is “no”, then we know there is no path. Oth-

erwise, by the characterization of Eulerian paths [6], Corol-

lary 4.1, either (1) every vertex of G′ has even degree, or

(2) exactly two vertices of G′ have odd degree.

In the first case, every Eulerian path p′ of G′ is also

a cycle, so when we translate to an antidirected Eulerian

path/cycle p of G, the starting orientation is the same as

the ending orientation if and only if G has an odd number e

of edges. Thus we can answer the restricted antidirected Eu-

lerian path problem by checking whether (s = t)↔ (e odd).

If s = t and e is odd, then we find an antidirected Eulerian

cycle and choose the starting parity for a path to match

s = t. If s 6= t and e is even, then we find any antidirected

Eulerian cycle and any starting point, and reverse the path

if s and t mismatch. Otherwise, no satisfying antidirected

Eulerian path exists.

In the second case, every Eulerian path p′ of G′ has its

endpoints at the two odd-degree vertices o1, o2 of G′, so ev-

ery antidirected Eulerian path p in G has its extreme edge

orientations determined by whether o1 and o2 are plus or mi-

nus vertices (and which of o1 and o2 is chosen to be the start

versus end of the path). If o1 and o2 are both plus vertices,

then s = forwards and t = backwards is the only possibility.

If o1 and o2 are both minus vertices, then s = backwards

and t = forwards is the only possibility. If o1 and o2 are

plus and minus vertices, then s = t is the only constraint:

if s = t = forwards, then we start at the plus vertex; and

if s = t = backwards, then we start at the minus vertex.

Otherwise, no satisfying antidirected Eulerian path exists.

Therefore we can solve the restricted form of the antidi-

rected Eulerian path problem.

4.2.2 Forbidden-Transition Eulerian Path Char-

acterization

In the forbidden-transition Eulerian path problem

[20], we are given an undirected graph G = (V,E) and,

for every vertex v ∈ V , a partition of the edges Ev inci-

dent to v into groups Pv,1, Pv,2, . . . , Pv,kv
. The goal is to

find an Eulerian path v0, v1, . . . , v|E| of G such that, for ev-

ery vertex visit vi where 0 < i < |E|, the incident edges

(vi−1, vi) and (vi, vi+1) belong to different groups among

Pvi,1, Pvi,2, . . . , Pvi,kvi
. In other words, we forbid use of

the subpath (vi−1, vi, vi+1) when (vi−1, vi) and (vi, vi+1)

belong to a common group Pvi,j .*5 In a forbidden-

transition Eulerian cycle , we similarly restrict the sub-

path (v|E|−1, v|E| = v0, v1).

Kotzig [20] showed (in a slightly more general scenario)

that the natural necessary conditions for this problem are

in fact sufficient. We repeat Kotzig’s mathematical argu-

ment here in order to verify that it also yields an efficient

algorithm.

Theorem 4.7 ([20]). An undirected graph G and parti-

tion system P has a forbidden-transition Eulerian path if

and only if G has an Eulerian path and every group Pv,i

has |Pv,i| ≤ ddegree(v)/2e. If furthermore G has an Eule-

rian cycle, then (G,P ) has a forbidden-transition Eulerian

cycle. When such a path/cycle exists, it can be found in

linear time.

Proof. By the characterization of Eulerian paths [6], Corol-

lary 4.1, G must have exactly zero or two vertices of odd de-

gree. We can reduce to the case of zero odd-degree vertices

as follows. If G has two odd-degree vertices, then add an

edge between them, which increases their degrees to even but

does not change ddegree(vi)/2e. Now apply the zero-odd-

degree-vertices case of the present theorem (proved below)

to obtain an Eulerian cycle with the desired property. Re-

moving the added edge results in an Eulerian path with the

desired property. Therefore we can assume every vertex has

even degree, so we can ignore the ceilings.

Next we prove that the conditions are necessary. Clearly

G having an Eulerian path is necessary for it to have

a forbidden-transition Eulerian path. If any |Pv,i| >

degree(v)/2, then we claim that (G,P ) cannot have a

forbidden-transition Eulerian path. Any Eulerian path in

G is a cycle, and thus its traversal order pairs up the edges

Ev incident to v into degree(v)/2 pairs. By the Pigeonhole

*5 It is tempting to think that antidirected Eulerian path in a di-
rected graph is a special case of forbidden-transition Eulerian
path in an undirected graph, using two groups at each vertex
to represent the outgoing vs. incoming edges. However, the an-
tidirected constraint requires repeating the incoming/outgoing
nature at each vertex, while the forbidden-transition constraint
prevents repeating the incoming/outgoing nature at each ver-
tex.
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Principle, some pair has both its edges in Pv,i, which is a

forbidden transition.

Now suppose G has an Eulerian path and every group Pv,i

satisfies |Pv,i| ≤ degree(v)/2. For each vertex v, order its

incident edges Ev = {e1, e2, . . . , edegree(v)} so that all edges

from group Pv,i appear consecutively in the ordering, for all

1 ≤ i ≤ kv. Now pair each edge ej with ej+degree(v)/2, for

1 ≤ j ≤ degree(v)/2. Because each |Pv,i| ≤ degree(v)/2,

this pairing has no forbidden pairs. The perfect pairing at

each vertex partitions the graph’s edges into edge-disjoint

cycles.

To merge these cycles into one Eulerian cycle, take any

two cycles C,C′ that share a vertex v (which exist because

G has an Eulerian path so its edges are connected). Sup-

pose one cycle pairs edges (e1, e2) at v, while the other cy-

cle pairs edges (e′1, e
′
2) at v. Suppose e1, e2, e

′
1, e
′
2 are in

groups i1, i2, i
′
1, i
′
2. If we change the local pairing to (e1, e

′
2)

and (e′1, e2), then we merge the cycles, and avoid forbidden

pairs provided i1 6= i′2 and i′1 6= i2. If we change the lo-

cal pairing to (e1, e
′
1) and (e′2, e2) (and reverse one of the

cycles), then we again merge the cycles, this time avoiding

forbidden pairs provided i1 6= i′1 and i′2 6= i2. Because the

cycles have no forbidden pairs, i1 6= i2 and i′1 6= i′2. Thus

we can have at most two equalities among the four possible

comparisons between {i1, i2} and {i′1, i′2}. Therefore one of

the two merging strategies works.

We can implement this algorithm in linear time by con-

structing the pairing locally as linked pointers, representing

each cycle as a doubly linked list on its edges, where each

edge stores its two neighboring edges in the cycle in no par-

ticular order. Number the cycles 1, 2, . . . , k, and iterate over

the cycles to mark each vertex with each of the cycles it be-

longs to, along with one edge pairing from that cycle. Label

cycle 1 as “merged” and the rest as “unmerged”. Perform

a depth-first search in G from any vertex that is in cycle 1.

At each vertex v visited, iterate through the cycles that v

belongs to (via v’s marks); if any cycle i has not yet been

merged, then merge it into cycle 1 by adjustingO(1) pointers

among v’s marked edge pairings for cycles 1 and i, labeling

cycle i as “merged”. By induction, every vertex visited by

the depth-first search will have already been merged into

cycle 1. The running time beyond the linear cost of depth-

first search is proportional to the number of marks, which

(by the Handshaking Lemma) is twice the number of edges.

This algorithm is essentially the efficient implementation of

Hierholzer’s Algorithm for Eulerian tours from [14].

Next we combine this result with the results of Sec-

tion 4.2.1 about antidirected Eulerian paths. For a directed

graph G and a partition system P , define a forbidden-

transition antidirected Eulerian path in (G,P ) to be

an antidirected Eulerian path e1, e2, . . . , e|E| of G such that

no two edges ei and ei+1 belong to a common group Pv,j

where v is the shared vertex of ei and ei+1.

Corollary 4.8. The forbidden-transition antidirected Eu-

lerian path problem can be solved in linear time. The same

result holds if the path is further restricted to start and/or

end with a specified direction (forwards or backwards).

Proof. Apply the reduction of Theorem 4.5 to obtain an

undirected graph G′ with the property that Eulerian paths

in G′ correspond to antidirected Eulerian paths in G. For

each vertex v± of G′ and each 1 ≤ i ≤ kv, define P ′v±,i to be

the set of edges ofG′ incident to v± that correspond to edges

of G in Pv,i. Then apply Theorem 4.7 to decide whether

(G′, P ′) has a forbidden-transition Eulerian path, which is

equivalent to whether (G,P ) has a forbidden-transition an-

tidirected Eulerian path. To handle the start/end direction

constraints, we can apply the same post-analysis as in Corol-

lary 4.6.

4.2.3 Linear-Time Algorithm for Leg-Contact

Right-Isosceles-Triangle Edge Matching

Now we use the algorithms we have built for antidirected

and forbidden-transition Eulerian paths to solve leg-contact

right-isosceles-triangle edge matching. The unsigned case re-

duces to antidirected Eulerian paths, while the signed case

reduces to forbidden-transition antidirected Eulerian paths.

Theorem 4.9. 1×n signed and unsigned leg-contact right-

isosceles-triangle edge-matching puzzles can be solved in

linear time.

Proof. First note that tile hypotenuses can never touch in

a 1 × n box by leg contact, so we can ignore those edges’

colors completely. We treat the signed and unsigned cases

separately:

Unsigned case: Our algorithm reduces unsigned edge

matching to the antidirected Eulerian path problem in a di-

rected graph, as solved in Section 4.2.1. Given an instance

of unsigned 1 × n leg-contact isosceles-right-triangle edge

matching, we construct a directed graph G as follows. Cre-

ate a vertex for each unique color that occurs on the legs

of the tiles. For every triangle u∠ ∠
H

v, create a directed edge

(u, v).

Any edge-matching solution consists of some ordering of

the triangles that they pack into the 1×n box, with triangles

alternating between being oriented with its hypotenuse on

the top or bottom (see Fig. 12c), and consecutive triangles

matching on their shared edges. We claim that such an edge-

matching solution corresponds, by replacing each tile with

its corresponding edge inG, to an antidirected Eulerian path

in G. First, the path must be antidirected: following an edge

(u, v) in the forwards direction corresponds to placing u∠ ∠
H

v

with its hypotenuse on the bottom (so colors u and v are on

the left and right, respectively), while following edge (u, v)

in the reverse direction (v, u) corresponds to placing the tile

rotated 180◦ with its hypotenuse on the top (so colors v and

u are on the left and right, respectively). Second, the path

must be Eulerian, because an edge-matching solution must

use every tile exactly once.

The last constraint to handle is the left and right bound-

ary conditions. If the left edge of the box has an acute angle
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at the bottom [top], then the first tile must be placed with

its hypotenuse on the bottom [top], so the first edge of the

antidirected Eulerian path must be forwards [backwards].

Similarly, if the right edge of the box has an acute angle

at the bottom [top], then the last tile must be placed with

its hypotenuse on the bottom [top], so the first edge of the

antidirected Eulerian path must be forwards [backwards].

These constraints are exactly what Corollary 4.6 handles in

polynomial time. By deciding whether G has an appropri-

ate antidirected Eulerian path, we decide whether the edge-

matching puzzle has a solution, and an actual solution can

be converted by the tile–edge correspondence.

Signed case: Our algorithm reduces signed edge match-

ing to the forbidden-transition antidirected Eulerian path

problem in a directed graph, as solved in Section 4.2.2.

Given an instance of signed 1 × n leg-contact isosceles-

right-triangle edge matching, we construct the same directed

graph G as the unsigned case. To capture the color sign

constraint on adjacent tiles, we define forbidden transitions

for the antidirected Eulerian path in G. Specifically, for

each vertex corresponding to an unsigned color c, define four

groups:

( 1 ) Pc,1 consists of all edges incoming to c corresponding

to tiles of the form ∠ ∠+c;

( 2 ) Pc,2 consists of all edges incoming to c corresponding

to tiles of the form ∠ ∠−c;

( 3 ) Pc,3 consists of all edges outgoing from c corresponding

to tiles of the form +c∠ ∠; and

( 4 ) Pc,4 consists of all edges outgoing from c corresponding

to tiles of the form −c∠ ∠.

We claim that edge-matching solutions correspond to

forbidden-transition antidirected Eulerian paths in (G,P ).

Any antidirected path, when visiting a vertex c not as a

path endpoint, will use either two incoming edges (groups

1 and 2) or two outgoing edges (groups 3 and 4). The for-

bidden transitions thus exactly prevent matching together

two instances of c of the same sign. Therefore Corollary 4.8,

with the same start/end conditions as the unsigned case,

solves the problem.

4.2.4 #P-completeness of Leg-Contact Right-

Isosceles-Triangle Edge Matching

Even though leg-contact right-isosceles-triangle edge-

matching puzzles are not hard to solve, counting their solu-

tions remains hard.

Theorem 4.10. 1 × n signed and unsigned leg-contact

right-isosceles-triangle edge-matching puzzles are #P-

complete.

Proof. We reduce from counting the number of Eulerian

cycles in an undirected graph, proved #P-complete in [8].

Given such an undirected graph G, we first add two vertices

s, t and attach them to an arbitrary vertex v of G, forming

an undirected graph G′. The number of Eulerian cycles in G

is exactly twice the number of Eulerian paths in G′ (whose

endpoints are necessarily s and t — choosing which end-

point is the start of the path incurs the factor of 2). Thus

we can reduce from counting the number of Eulerian paths

in a graph G′ with two degree-1 vertices s, t.

Unsigned case: For the endpoint vertices s, t, construct

two corresponding triangles

U1∠ ∠
H

s and U2∠ ∠
H

t,

where s and t are colors representing those vertices, H is

an arbitrary hypotenuse color, and U1 and U2 are globally

unique colors. Because U1 and U2 appear only in these tiles,

the tiles must be placed leftmost and rightmost in the puzzle

(where the rightmost tile is rotated 180◦).

For each edge e = {u, v} in G′, construct two correspond-

ing triangles
e∠ ∠
H

u and e∠ ∠
H

v,

where u, v are colors representing these vertices and e is a

color representing this edge. Because color e appears only in

these two tiles, these tiles must be placed together (with one

of them rotated 180◦), resulting in a parallelogram with left

color u and right color v or, rotating by 180◦, the same shape

with left color v and right color u. Thus these two tiles (or

the resulting parallelogram) simulates the edge {u, v} that

can be used in either direction.

It follows that edge-matching solutions correspond bijec-

tively to Eulerian paths in G′.

Signed case: For the endpoint vertices s, t, construct

two corresponding triangles:

U1∠ ∠
H

+s and U2∠ ∠
H

+t,

where s and t are colors representing those vertices, H is

an arbitrary hypotenuse color, and U1 and U2 are globally

unique colors, forcing these tiles to be placed leftmost and

rightmost in the puzzle.

For each vertex v /∈ {s, t} in G′, which has even degree k,

construct k/2 copies of two corresponding triangles:

−vX∠ ∠
H

+v and +vX∠ ∠
H

+v,

where v, vX are two colors corresponding to vertex v. Be-

cause vX appears only in these two triangles, they must be

placed together (with one of them rotated 180◦) to match

up the vX -color edges, resulting in a parallelogram with end

colors +v and +v.

For each edge e = {u, v} in G′, construct two correspond-

ing triangles:
−e∠ ∠

H

−u and +e∠ ∠
H

−v,

where u, v are colors representing these vertices and e is

a color representing this edge. (This construction depends

slightly on how we distinguish the endpoints of e as u and v,

but the choice can be made arbitrarily for each edge with-

out affecting the rest of the construction.) Because color e

appears only in these two tiles, these tiles must be placed
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together (with one of them rotated 180◦), resulting in a

parallelogram with left color −u and right color −v or, ro-

tating by 180◦, the same shape with left color −v and right

color −u.

By the signs of the colors, any edge-matching solution

must alternate between edge parallelograms and vertex par-

allelograms, starting and ending with edge parallelograms,

surrounded by the s and t triangles. It follows that edge-

matching solutions correspond to Eulerian paths in G′.

This reduction is not parsimonious. Each vertex par-

allelogram (with the same external colors of +v) can be

formed in two ways, blowing up the number of solutions

by a factor of 2. If G′ has m edges, then there are

m − 1 =
∑

v/∈{s,t} degree(v)/2 such vertex parallelograms,

for a total blowup of 2m−1. Furthermore, if we do not treat

copies of the vertex tiles as identical, then the k/2 copies of

each degree-k vertex tile can be permuted arbitrarily, blow-

ing up the number of solutions by a factor of (k/2)!2. The

total blowup is thus c = 2m−1 ∏
v(degree(v)/2)!2, an easy-

to-compute constant, making the reduction c-monious.

5. Shapeless Edge Matching

In this section, we analyze the complexity of the following

problems:

Definition 5.1. Signed/unsigned shapeless edge

matching is the following problem: given a set of n unit

square tiles where each edge of each tile is given a color

(and a sign in the signed case), can the tiles be laid out

in any configuration in the plane such that the overall

arrangement is connected via edges, and all edge-to-edge

contacts between tiles are compatible? In the rooted

variant, the problem specifies a single tile to be fixed at the

origin in a specified orientation.

The distinguishing feature of this problem, compared to

the rectangular edge-matching problems for which hardness

is already known, is that the target shape is not specified, so

there is no constraint on the spatial footprint of a solution.

We will show that shapeless edge matching is NP-complete

and rooted shapeless edge matching is ASP-complete and

#P-complete, by reduction from 1× n edge matching with

specified left boundary color, which was proved NP-complete

by [7] and proved ASP/#P-complete in Section 3 of this pa-

per (for both the signed and unsigned cases).

5.1 Shapeless Edge Matching NP-completeness

Theorem 5.1. Signed and unsigned shapeless edge-

matching puzzles are NP-complete.

Proof. A shapeless edge-matching solution can clearly be

checked in polynomial time, so shapeless edge matching is

in NP.

To prove NP-hardness, we reduce from 1×n edge match-

ing with specified left boundary color. Suppose we are given

an instance consisting of a set T of n tiles (signed or un-

signed) and a single color L denoting the color of the left

boundary edge of the 1 × n target box. We will produce a

shapeless edge-matching instance consisting of tile set T∪T ′,
where |T ′| = O(|T |) = O(n).

We design tile set T ′ to force these tiles into a rectan-

gular frame structure that simulates a 1 × n box. Fig. 15

lists the tiles, and Fig. 16 shows their intended placement.

We use four new colors {TW,RW,BW,LW} that appear

positively and negatively (or in the unsigned case, without

signs); each instance of U represents a globally unique (and

hence unmatchable) color.

Next we show that the frame tiles in T ′ must be positioned

to form the frame shown in Fig. 16. Our proof mentions

signed tiles, but does not depend on these signs, and thus

works equally well in the unsigned case by dropping signs

from all tiles. Consider the outer cap U
U

�
U
−TW . Because the

overall arrangement of tiles must be connected but edges col-

ored U are unmatchable, the outer cap’s edge colored TW

must be adjacent to either a top-wall tile +TW
U

�
U
−TW or

the top-right corner +TW
U

�
−RW

U, as they are the only other

tiles with edges colored TW . If the top-right corner were

adjacent to the outer cap, it would be impossible to con-

nect any of the n + 1 top-wall tiles, as there would be no

further way to expose an edge colored TW (of either sign).

By induction, all top-wall tiles are forced to be placed in a

row adjacent to the outer cap before the top-right corner is

placed, being the only remaining tile with an edge colored

TW . By the same argument, the right-wall tiles U
+RW

�
−RW

U

and bottom-right corner −BW
+RW

�
U

U are the only tiles with

edges colored RW . Therefore, following the top-right corner

must be the three right-wall tiles and then the bottom-right

corner, and similarly along the bottom wall and left wall,

terminating with the left boundary tile U
U

�
+LW

L as the fi-

nal frame tile. Thus any solution must form the frame as

desired.

Finally, we show that the shapeless edge-matching puz-

zle T ∪ T ′ has a solution if and only if the corresponding

1× n edge-matching instance T has a solution. The forced

arrangement of frame tiles only exposes edges colored with

an unmatchable U color, except for the single exposed edge

colored L. Thus the input tiles of T must connect to the

frame through that single edge. Fig. 16 shows that the only

available region in which to arrange the tiles of T is within

a 1× n box with its leftmost boundary colored L.

5.2 Shapeless Edge Matching ASP/#P-

completeness

Corollary 5.2. Signed and unsigned rooted shape-

less edge-matching puzzles are ASP-complete and #P-

complete.

Proof. For ASP/#P-completeness, we reduce from the

rooted variant of shapeless edge matching (which specifies

the position and orientation of one tile) to avoid the infi-

nite number of translations as well as global rotations. We
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Fig. 15: Frame tile set, each labeled by their multiplicity.

Fig. 16: Frame tiles laid out in their forced positions for n = 5. Grey squares show regions which cannot be occupied by

further tiles because they are adjacent to U -colored edges.

follow a similar reduction as the proof of Theorem 5.1, but

modified so that the frame has a unique construction, mak-

ing the reduction parsimonious. By Theorem 3.3, 1 × n

signed/unsigned edge matching with specified left bound-

ary color is ASP/#P-completeness, so this parsimonious re-

duction gives us ASP/#P-completeness for signed/unsigned

shapeless edge matching.

The only degree of freedom in Theorem 5.1’s frame con-

struction is the ordering of the wall tiles along each wall. In

order to fix their order, we create distinct tiles for each po-

sition along the wall, and give them each unique colors only

shared with their neighbors in that ordering. For example,

we modify the upper wall to consist of n+ 1 unique upper-

wall tiles and a suitably modified outer cap and upper-right

corner as follows:

U
U

�
U
−TW1 +TW1

U

�
U
−TW2 · · · +TWi

U

�
U
−TWi+1 · · ·

+TWn+1

U

�
U
−TWn+2 +TWn+2

U

�
−RW1

U.

Applying the same modification to the other walls and cor-

ners gives us a frame that has a unique construction, and

thus the number of solutions to the shapeless edge-matching

instance corresponds exactly to the number of solutions to

the original 1 × n edge-matching puzzle with specified left

boundary.

6. 2-player 1 × n Edge Matching

In this section, we prove PSPACE-hardness for 2-player

variants of 1 × n edge matching. In Section 6.1, we intro-

duce and analyze a new variant of geography called partizan

geography. Then in Section 6.2, we reduce from geography

and our new variant to 2-player 1× n edge matching.

6.1 Partizan Geography

Geography (also called generalized geography) is a game

played on a directed or undirected graph with a designated

start vertex. In vertex geography [15], [21], players take

turns moving from the current vertex to a neighboring ver-

tex that has not been visited, with the player who can no

longer move losing the game. In edge geography [15], [24],

revisiting vertices is allowed, but each edge can be used only

once. In all four variants, directed/undirected vertex/edge

geography, the decision question is whether the first player

has a winning strategy. Undirected vertex geography can be

solved in polynomial time [15], while all three other versions

are PSPACE-complete [15], [21], [24].

We introduce partizan versions of geography, where

the available moves depend on which player is moving
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→

Fig. 17: Gadget simulating vertex geography in edge geog-

raphy

next. In X Y-partizan Z geography , with X ∈
{directed, undirected} and Y,Z ∈ {vertex, edge}, players

take turns in an X graph extending a shared path,*6 playing

only Y s of their color while not repeating any Z already vis-

ited. For example, in edge-partizan vertex geography, play-

ers can play only edges of their color that lead to a vertex

not already visited. We give a complete characterization for

X Y -partizan Z geography for all combinations of X,Y, Z,

as summarized in Table 2.

First we need a result about (impartial) geography that

has been widely assumed, but to the best of our knowledge,

not explicitly proved in the literature:

Theorem 6.1. Directed edge geography remains

PSPACE-hard even when restricted to bipartite pla-

nar graphs with maximum degree 3 and maximum

in/outdegree 2.

Problem GP2 in Garey and Johnson [17] is called sim-

ply “Generalized Geography”, but its decision question de-

scribes directed edge geography, and they cite Schaefer’s pa-

per [24] which gives a PSPACE-hardness proof. But Garey

and Johnson also cite Lichtenstein and Sipser [21] to add the

bipartite, planar, and degree restrictions on the graph, ap-

parently overlooking the fact that the latter paper is about

vertex geography. This claim and citation pair have been

repeated in works such as Fraenkel et al.’s paper on undi-

rected geography [15], though Bodlaender [5] correctly dis-

tinguishes between vetex and edge geography.

Proof. Directed vertex geography is PSPACE-hard on bi-

partite planar graphs with maximum degree 3 and maximum

in/outdegree 2 [21]. We reduce from vertex to edge geogra-

phy by replacing each vertex (with any number of incoming

and outgoing edges) with the gadget shown in Fig. 17. This

gadget is bipartite, planar, and has the same maximum in-

degree and outdegree as the vertex it replaces.

If player 1 plays any of the incoming edges to this gadget,

the next two moves are forced; then it is player 2’s turn to

*6 Fraenkel and Simonson [16] analyze “path-construction games”
with two paths, with partizan and impartial variants that spec-
ify which paths each player is allowed to extend. Tron [22] is
another PSPACE-complete two-player two-path game. By con-
trast, partizan geography is about two players building a single
path (like geography).

play one of the outgoing edges. Once the gadget has been

traversed, playing any of the remaining incoming edges loses

the game (because the central edge has already been played).

Thus this gadget correctly simulates a vertex in the vertex

geography instance.

Theorem 6.2. Vertex-partizan geography is equivalent to

geography in bipartite graphs. Specifically:

• Directed vertex-partizan vertex geography and directed

vertex-partizan edge geography are PSPACE-complete

even when restricted to bipartite planar graphs with

maximum degree 3 and maximum in/outdegree 2.

• Undirected vertex-partizan vertex geography and undi-

rected vertex-partizan edge geography can be solved in

polynomial time.

Proof. Given a bipartite geography instance, coloring the

vertices according to the bipartition produces a vertex-

partizan game with the same winner. Conversely, no

monochromatic edges in a vertex-partizan instance can be

played because the players alternate moves, so those edges

can be deleted without changing the winner. The result-

ing graph is bipartite, with each partition containing only

vertices of a single player’s color. Thus the problems are

equivalent.

Directed vertex geography in bipartite planar maximum-

degree-3 maximum-in/outdegree-2 graphs is proved

PSPACE-complete in [21] and Theorem 6.1 extends this

to directed edge geography in the same class of graphs.

Undirected vertex geography (in all graphs) and bipartite

undirected edge geography are both polynomial [15]. All

of these results carry over directly to vertex-partizan

geography.

Theorem 6.3. Edge-partizan geography (of all kinds) is

PSPACE-complete even when restricted to bipartite planar

graphs with maximum degree 3 and maximum in/outdegree

2.

Proof. Given an (impartial) bipartite directed vertex/edge

geography instance, we can color the vertices red and blue,

so (by bipartiteness) every edge is from red to blue or from

blue to red. Color the first type of edge red and the sec-

ond type of edge blue. Because every path alternates ver-

tex colors, every path also alternates edge colors, so adding

the edge-partizan constraint does not prohibit any path.

Thus bipartite directed geography reduces to directed edge-

partizan geography.

We can reduce directed edge-partizan geography to undi-

rected edge-partizan geography using the directed-edge-

simulation gadget in Fig. 18. When the blue player plays the

left edge, the red and blue player’s next moves are forced;

then it is the red player’s turn at the right vertex. If blue

tries to play the simulated edge backwards (starting at the

right vertex), then red can immediately win using the leaf.

Thus all edge-partizan geography games are PSPACE-

complete even when restricted to bipartite planar graphs

with maximum degree 3 and maximum in/outdegree 2,
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→
Fig. 18: A gadget simulating a directed edge with undirected

edges. (Exchange colors to simulate a red edge.)

again carrying through the results in [21] and Theo-

rem 6.1.

6.2 Reduction from Geography to 2-player 1 × n

Edge Matching

In this section, we analyze the complexity all four variants

of the following 2-player edge-matching game:

Definition 6.1. In the 2-player signed/unsigned edge-

matching game , two players play on a 1× n board where

the left boundary edge has a specified (possibly signed)

color. Also given are n square tiles, where each tile Ti =

ai

bi
�
di

ci consists of four (possibly signed) edge colors. In two

variants, the players draw from a shared pool (any player

can choose any tile) or from their own pools (each player

can choose a tile only from their own pool). The players

take turns making the following type of moves: choosing

an unused tile from the available pool, choosing one of the

four rotations of the tile, and placing the rotated tile in the

leftmost unoccupied position of the board. A move is valid

only if the tile’s left edge is compatible with the edge to its

left (on the right of the previously played tile or the edge of

the board). If a player has no valid move, then that player

loses and the other player wins. The decision problem is to

determine whether the first player can force a win.

First we present a proof similar to the proof of Theo-

rem 3.3, although its results are subsumed by the following

theorem.

Theorem 6.4. If players draw from a shared pool of

tiles, which can be signed or unsigned, the 2-player edge-

matching game is PSPACE-complete.

Proof. We reduce from directed vertex geography in graphs

with maximum degree 3, which was proved PSPACE-hard

in [21]. Our reduction is the same as the reduction used

in the proof of 1-player ASP-completeness in Theorem 3.3,

whose tiles are shown in Fig. 11. In the proof of Theorem 3.3,

three tiles are placed for each vertex, so if two players alter-

nate placing tiles, then they alternate placing the first tile

for each vertex, which corresponds to taking that vertex in

the geography game. In the same proof, the only choices

are which tile to place second for each vertex of outdegree 2

(the first tile is fixed, and the unchosen tile must be placed

third), a choice which the player who did not place the first

tile for that vertex can make and which determines the next

visited vertex in the tile-placing game. Correspondingly, in

the geography game, when one player chooses a vertex, the

player who did not choose that vertex chooses the next vis-

ited vertex. Finally, the winner of the tile-placing game is

the last player to place a tile. Each vertex has three tiles

which are always placed in sequence, so the last player to

place a tile is the last player to place the first tile for a ver-

tex, which corresponds to the last player to pick a vertex in

the geography game. So the winner of the geography game

is the winner of the tile-placing game, as desired.

The same proof almost works in the case where the play-

ers draw from their own pools of tiles if we reduce from

directed vertex-partizan vertex geography, because then we

know which player places the first tile for each vertex. How-

ever, the other player needs to be able to choose the second

tile for each vertex, and then the original player needs to be

able to choose the remaining third tile, meaning we do not

know which pools should have those two tiles. There is in

fact an even simpler proof that avoids this problem:

Theorem 6.5. The 2-player signed and unsigned edge-

matching games are PSPACE-complete, whether players

draw from their own pools of tiles or from a shared pool.

Proof. We reduce from a version of edge geography. For

signed edge matching, we reduce from directed edge geog-

raphy. For unsigned edge matching, we reduce from undi-

rected edge geography. For players drawing from their own

tile pools, we reduce from edge-partizan edge geography. For

players drawing from a shared pool, we reduce from impar-

tial (nonpartizan) edge geography. All four of these versions

of edge geography are PSPACE-complete by [15], [24] and

Theorem 6.3.

In all cases, the reduction creates a single tile for each edge

in the graph. For a directed edge (u, v), we make a signed

tile −u
U

�
U

+v. For an undirected edge {u, v}, we make an un-

signed tile u
U

�
U

v. Each U denotes a globally unique color,

so these tiles can be rotated only by 180◦. In the own-pool

case, we put the tile in the pool of the player that can play

the corresponding edge in edge-partizan geography. We set

the left boundary edge color to +s in the signed case and s

in the unsigned case, where s is the given start vertex. We

define the board size n to be the number of tiles (the number

of edges in the input graph) so that there is no additional

limit on the number of moves.

We claim that the resulting 2-player edge matching game

faithfully simulates the edge geography game. By the left

edge color, the first tile must have an edge colored s, and

in the signed case, the edge must be colored −s; equiva-

lently, the first edge played in geography must be incident

to s, and in the directed case, it must be an edge outgoing

from s. In a general move, the rightmost tile’s right edge

(exposed) color v represents the vertex v most recently vis-

ited by the path, and the current player must choose a tile

representing an edge incident to or outgoing from that ver-

tex, revealing the other endpoint of that edge. Because each

tile can be played only once, each edge can be played only

once (edge geography). The last player to play a tile/edge
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wins the game.
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[31] Žitnik, A.: Anti-directed Walks in 4-valent Graphs, Preprint
series, volume 34, number 530, University of Ljubljana,
Ljubljana, Slovenia (1996).

Jeffrey Bosboom received a B.S.

degree from the University of Califor-

nia, Irvine, in 2011, and M.S. and

Ph.D. degrees from Massachusetts In-

stitute of Technology in 2014 and 2020,

respectively. His research interests are

compilers and programming languages

for performance engineering, and the

computational complexity of games and puzzles.

Charlotte Chen received her B.S.

degree in Computer Science and Math-

ematics from Massachusetts Institute

of Technology in 2019.

© 1992 Information Processing Society of Japan 21



Journal of Information Processing Vol.0 1–23 (??? 1992)

Lily Chung received her B.S. degree

from Massachusetts Institute of Tech-

nology in 2019. Her research inter-

ests are cryptography, formally verified

programming, and complexity theory.

Spencer Compton is pursuing a

B.S. degree in Computer Science and

Engineering from the Massachusetts

Institute of Technology.

Michael Coulombe received his

B.S. degree from the University of

California at Davis in 2013 and his

M.S. degree from the Massachusetts

Institute of Technology in 2015. He

is currently working towards a Ph.D.

under Erik Demaine.

Erik D. Demaine received a B.Sc.

degree from Dalhousie University in

1995, and M.Math. and Ph.D. degrees

from the University of Waterloo in

1996 and 2001, respectively. Since

2001, he has been a professor in com-

puter science at the Massachusetts In-

stitute of Technology. His research in-

terests range throughout algorithms, from data structures

for improving web searches to the geometry of understand-

ing how proteins fold to the computational difficulty of play-

ing games. In 2003, he received a MacArthur Fellowship

as a “computational geometer tackling and solving difficult

problems related to folding and bending— moving readily

between the theoretical and the playful, with a keen eye to

revealing the former in the latter”. He cowrote a book about

the theory of folding, together with Joseph O’Rourke (Ge-

ometric Folding Algorithms, 2007), and a book about the

computational complexity of games, together with Robert

Hearn (Games, Puzzles, and Computation, 2009). With

his father Martin, his interests span the connections between

mathematics and art.

Martin L. Demaine is an artist

and computer scientist. He started

the first private hot glass studio in

Canada and has been called the father

of Canadian glass. Since 2005, he

has been the Angelika and Barton

Weller Artist-in-Residence at the

Massachusetts Institute of Technology.

Martin works together with his son Erik in paper, glass, and

other material. Their artistic work includes curved origami

sculptures in the permanent collections of the Museum

of Modern Art in New York, and the Renwick Gallery in

the Smithsonian. Their scientific work includes over 140

published joint papers, including several about combining

mathematics and art.

Ivan Tadeu Ferreira Antunes Filho

received B.S. and M.Eng. degrees from

Massachusetts Institute of Technology

in 2017 and 2019, respectively. His

research interests are Boolean Satis-

fiability Problems, the computational

complexity of simple games, and more

recently, resource-constrained project

scheduling heuristics.

Dylan Hendrickson is a graduate

student in computer science at MIT

studying the computational complex-

ity of motion planning problems un-

der Erik Demaine. Dylan received

a B.Sc. degree in mathematics and

physics from MIT in 2019.

Adam Hesterberg received an A.B.

degree summa cum laude from Prince-

ton University in 2011 and a Ph.D. de-

gree from Massachusetts Institute of

Technology in 2018. He is now Assis-

tant Director of Undergraduate Stud-

ies in Computer Science at Harvard

University.

Calvin Hsu received a B.S. degree

in Mathematics and Computer Science

from the Massachusetts Institute of

Technology. He is also currently pur-

suing a Ph.D. degree in Mathematics

in Stanford University.

© 1992 Information Processing Society of Japan 22



Journal of Information Processing Vol.0 1–23 (??? 1992)

William Hu is a junior undergradu-

ate at the Massachusetts Institute of

Technology, Class of 2022. His in-

terests include machine learning and

algorithms. He has participated in

a variety of programming competi-

tions, including the 2018 International

Olympiad in Informatics as a member

of the USA team.

Oliver Korten was born in 1998. He

recieved a B.S. degree in Mathematics

and Computer Science from Tufts Uni-

versity in 2020. He is currently pursu-

ing a Ph.D. degree in Computer Sci-

ence at Columbia University.

Zhezheng Luo was born in 2000. He

is pursuing a B.S. degree in Mathe-

matics and Computer Science from the

Massachusetts Institute of Technology.

Lillian Zhang received a B.S. degree

in Mathematics with Computer Sci-

ence from the Massachusetts Institute

of Technology in 2020.

© 1992 Information Processing Society of Japan 23


