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ABSTRACT

Origami-based design methods enable complex devices to be fabricated quickly in plane and then folded into

their final 3-D shapes. So far, these folded structures have been designed manually. This paper presents a geomet-

ric approach to automatic composition of folded surfaces, which will allow existing designs to be combined and

complex functionality to be produced with minimal human input. We show that given two surfaces in 3-D and their

2-D unfoldings, a surface consisting of the two originals joined along an arbitrary edge can always be achieved by

connecting the two original unfoldings with some additional linking material, and we provide a polynomial-time al-

gorithm to generate this composite unfolding. The algorithm is verified using various surfaces, as well as a walking

and gripping robot design.1

1 Introduction

Today’s engineering designs are limited by practical considerations of their fabrication. Although recent advancements

in machining practices and 3-D printing technology have produced significant speedup in manufacturing of mechanical struc-

tures, these methods are still costly and time consuming when compared with planar fabrication alternatives [2]. Origami-

based design methods aim to augment existing 2-D fabrication techniques with folding algorithms to allow rapid fabrication

of 3-D structures. Fabricating structures in plane and then folding them into their final shape will allow complex devices

to be created more quickly and efficiently, providing engineers with greater opportunities to prototype, test, and refine their

designs.

Although folding in engineering design has existed in sheet metal products for decades [3], it is only recently being ap-

plied to electromechanical devices. Work in foldable circuits [4–6] has renewed interest in origami-inspired design methods.

∗Corresponding author: Address: MIT CSAIL, 32 Vassar St, 32-376, Cambridge, MA 02139, USA
1Some material in this paper has been adapted from [1]
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The ability to integrate sensors and circuitry directly into the physical body of a device has enabled rapid fabrication of fully

functional robots [2,7,8]. In addition, folding as a vehicle for physical change has given rise to machines with customizable

shape [6] and transformable structures that support rapid precise assembly of small devices [9].

Despite these successes, the design of folded structures has always been performed by humans and is often a long,

iterative, and application-specific process. We present an algorithm that will introduce some automation into the design

process. More specifically, we are interested in automatically composing multiple designs together so that the end product

has the combined functionality of the originals. We take a primarily geometric approach and consider only the shape of the

folded structure. Figure 1 illustrates the problem addressed. Given two folding patterns, in this case a walking robot and a

gripper, our algorithm automatically generates a composite folding pattern for a walking robot with a gripper on one end.

figure 1

This paper addresses edge-compositions, compositions involving two surfaces connected at one edge via hinge joint. For

ease of assembly of the final product, we require that the folding pattern be one piece. In addition, for structural reasons, it

is desirable for the composite folding pattern to contain the original folding patterns, rather than for it to be a new unfolding.

This is because in a folded state, cut edges, edges corresponding to edges on the boundary of an unfolding that have been

glued together, are mechanically weaker than folds. Cutting along an edge that will be subjected to large stresses may

drastically weaken the final product. We assume that the two inputted folding patterns satisfactorily perform their intended

functions, and therefore require that the composite folding pattern contain the original unfoldings in their entirety as subsets.

Related Work

The problem of finding edge-compositions of unfoldings is related to that of edge-unfolding of polyhedra from the field

of computational geometry (See [10] for a survey of results). Edge-unfolding involves flattening a polyhedron by cutting

along some of its edges and unfolding the rest. The resulting planar figure should be a simple, non-overlapping polygon.

The traditional problem statement for edge unfolding requires that every face be covered exactly once and that no extra

material be added, leading to such results as [11] for which an unfolding does not exist. To ensure that an unfolding of an

edge-composition can always be found, we allow the addition of extra material as long as it can be tucked away against an

existing face.

In this sense, our problem is more similar to that studied by Tachi [12,13], where an arbitrary polyhedral surface is folded

from a 2-D sheet of paper. Faces of the polyhedral surface are positioned on the 2-D plane, then excess material is tucked

away to bring neighboring faces together. However, this process requires that neighboring faces on the polyhedral surface

be placed adjacent in the plane. In contrast, we would like to keep our original fold patterns intact, and the faces touching

the hinged edge may not always be able to be placed close to each other. Furthermore, Tachi’s work forbids cuts, requiring

that the unfolding be a convex polygon, and thus may be less efficient in terms of material usage. Finally, tucks protrude

perpendicularly from the final resulting polyhedral surface, although theoretically they could be crimped to arbitrarily small

length. If the surfaces produced are all static, this is not a major cause of concern. Since we would like to accommodate

transformable folded surfaces, whose fold angles can change, we require tucks that fold flat.
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The idea to generate an unfolding by combining simple surfaces into more complex ones is similar to Mitani’s work [14,

15], in which rotational symmetry of the goal surface allows the surface to be decomposed into slices, each of which can

be achieved by the same fold pattern. Similarly, Cheng and Cheong [16] decompose a surface into horizontal slices and

construct its unfolding one level at a time. Both of these algorithms are limited in the types of surfaces that they can produce,

and, like [13], the produced surfaces are static. Edge-compositions offer greater potential in the types and the degrees of

freedom of resulting folded surfaces.

In sheet metal design, several efforts have also been made to automate the design process. For example, [17] proposes

a multi-stage heuristic for generating a sheet metal part that covers all user-specified regions while avoiding user-specified

obstacles. This is done by adding bridges between pairs of regions until every region is covered and the part is connected.

In [18, 19], the authors solve a similar problem but enforce manufacturability of the part by generating only designs that can

be produced using a set of allowed sheet metal operations. In both of these cases, the user inputs only constraints on what

should or should not be covered, but the actual shape of the part is left to the algorithm, allowing greater flexibility to reduce

cost and manufacturing time. Wang [20] considers the case where the desired shape of the sheet metal part is entirely known.

When the shape is not manufacturable as a single piece, then it is decomposed into simpler manufacturable components that

can be assembled via welding, riveting, etc. Wang does not attempt to combine the components into one sheet, again for

ease of manufacturing.

With the difference in goals between the engineering and computational geometry communities comes a difference in

modeling: where folding algorithms generally assume an ideal paper, a zero-thickness material that does not stretch, sheet

metal designers specifically adjust for material thickness and deformations that occur when bending [21]. Since foldable

electronics typically use a thin material, especially at joints, we use the ideal paper model.

Our Contributions

This paper considers edge-compositions of folded structures. Our main result is the following:

Any edge-composition of two folded surfaces has a one-piece non-self-intersecting unfolding consisting of 1) the unfoldings

of the two original folded surfaces connected by 2) a bridge of linking material. (see Theorem 1)

We provide a polynomial-time algorithm for generating the composite unfolding and experimental evaluation across various

input surfaces.

The remainder of this paper is structured as follows. Section 2 introduces necessary notation and states the problem

being addressed. Section 3 gives the main insight behind generating composite fold patterns, and Section 4 provides the

algorithm in greater detail. Section 5 contains the results of the algorithm for various edge-compositions. Sections 6 and 7

summarize the contributions of this work and provide directions for future study.
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2 Definitions and Problem Statement

A polygon P is a planar figure topologically equivalent to a disc and bounded by a closed non-self-intersecting path

composed of a finite number of line segments. This path is called the boundary ∂P of P, and the area enclosed is its interior

P̊. The line segments on the boundary are edges, denoted E(P) = {eP
1 ,e

P
2 , . . .}, and the points where two edges meet are

vertices, denoted V (P) = {vP
1 ,v

P
2 , . . .}.

A polyhedral complex Q is a union of a finite set of polygons such that the intersection of any two polygons, if nonempty,

is an edge or a vertex of each. The polygons making up Q are called its faces. The vertices and edges of Q are the vertices

and edges of its faces, and are denoted by V (Q) =
⋃

P∈Q V (P) and E(Q) =
⋃

P∈Q E(P) respectively.

A folded state of a polygon P is a mapping φF : P→ R3 where the restriction map φF : P̊→ R3 is isometric and

noncrossing. We say that a polyhedral complex Q can be unfolded into P if Q is the image of a folded state φF(P) (see

Fig. 2). The folded state φF(P) can also be represented as the union of polygonal faces. Every edge eφ of the folded state

that is not on the boundary corresponds to a fold f = (eP,θ), where the fold line eP is the line segment on P that corresponds

to eφ and the fold angle θ is equal to the dihedral angle between the faces of φF(P) sharing eφ (Fig. 3). Positive fold

angles correspond to what are commonly termed “valley folds,” and negative fold angles are “mountain folds.” The figures

throughout this paper denote valley folds with dashed segments and mountain folds with dash-dotted segments. We denote

the set of folds F = {(eP
1 ,θ1),(eP

2 ,θ2), . . .}. The polygon P and these folds together comprise an unfolding (P,F) of Q, and

they uniquely define the folded state φF(P). We call the exterior of P, R2 \P, the free space.

figure 2

figure 3

We allow the following rigid transformations of an unfolding (P,F) in the plane:

• translation by a vector v: P and all edges in F are translated by v

• rotation by an angle α around a point x: P and all edges in F are rotated by α about x

• reflection: P and all edges in F are reflected over the x-axis. All fold angles in F are negated.

Then the problem we would like to solve is as follows.

Problem 1. Given two polyhedral complexes Q1 and Q2 with unfoldings (P1,F1) and (P2,F2), and two edges eQ1 ∈ E(Q1)

and eQ2 ∈ E(Q2), find an unfolding (P3,F3) such that

1. (P3,F3) is the unfolding of the union of Q1 and Q2 translated and rotated so that eQ1 is coincident to eQ2 , and

2. (P3,F3) contains translated, rotated, and/or reflected instances of (P1,F1) and (P2,F2) as subsets.

The selected edges eQ1 and eQ2 act as a hinge in the combined surface. Informally, hinge joints are folds whose fold

angles are not fixed but rather can take a range of values. In order for a solution to Problem 2 to make sense, the range of

fold angle of this hinge must not cause Q1 and Q2 to collide. For the remainder of the paper, we assume that this range is

nonempty.

The edges eQ1 and eQ2 can be mapped to edges on the unfoldings (P1,F1) and (P2,F2). Because we allow multiple
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coverage of faces and edges in a folded state, it is possible for multiple edges in (P1,F1) to correspond to eQ1 . Let EP1 be the

set of these edges, and similarly for EP2 . By definition, if we are able to guarantee for a (P3,F3) that one edge in EP1 will

coincide with one edge in EP2 in the folded state, then (P3,F3) will satisfy condition (1) of Problem 1. We therefore modify

the problem statement slightly to concern folded states rather than their images.

Problem 2. Given two unfoldings (P1,F1) and (P2,F2), an edge eP1 in (P1,F1), and an edge eP2 in (P2,F2), find an unfolding

(P3,F3) such that

1. (P3,F3) is an unfolding of the union of translated and rotated instances of Q1 and Q2, the images of folded states of

(P1,F1) and (P2,F2) respectively,

2. in the folded state, eP1 and eP2 coincide, and

3. (P3,F3) contains rotated, translated, and/or reflected instances of (P1,F1) and (P2,F2) as subsets.

Solving this problem for any combination of eP1 ∈ EP1 and eP2 ∈ EP2 will satisfy Problem 1. The remainder of this paper

is concerned with solving Problem 2.

2.1 Representation

For analysis of our algorithms, we assume a random-access machine that can perform real arithmetic and store real

numbers. We store an unfolding (P,F) on this machine in four parts:

1. an N× 2 array V(P,F), where N is the total number of unique vertices in P and F . Row i of V(P,F) contains the (x,y)

coordinate values of the ith vertex.

2. an M×2 array E(P,F), where M is the total number of edges in P and F . Row i of E(P,F) contains the indices from V(P,F)

of the endpoints of edge i.

3. a list B(P,F) of length M. Element i is an indicator equal to 1 if edge i is an edge on P and 0 if edge i is a fold line in F .

4. a list Θ(P,F) of length M. Element i is the fold angle corresponding to edge i if edge i is a fold line and 0 otherwise.

Thus storage of (P,F) is O(N+M). For the remainder of this paper, we will use the notation that Ni is the number of vertices

in (Pi,Fi) and Mi the number of edges.

3 Edges on the Convex Hull Boundary

In order to construct (P3,F3), the input unfoldings (P1,F1) and (P2,F2) must be arranged in the plane without intersection

and extra material added so that the edges to be joined, eP1 and eP2 , are coincident in the folded state. We use the following

insight.

Lemma 1. If eP1 and eP2 are on the boundaries of the convex hulls of their respective unfoldings, then they may be placed

coincident in the plane and will not cause (P1,F1) and (P2,F2) to intersect.

Proof. Let CH(P1) be the convex hull of P1. By definition, P1 ⊆ CH(P1). Because CH(P1) is convex and eP1 is an edge on
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its boundary, CH(P1) must lie entirely on one side of the line common to eP1 (see Fig. 4). Similarly, CH(P2) must lie entirely

on one side of the line common to eP2 .

Rotate, translate, and reflect (P2,F2) so that eP2 is coincident to eP1 and CH(P2) is on the opposite side of eP2 as CH(P1).

Since CH(P1) and CH(P2) are on opposite sides of the line now collinear to both eP1 and eP2 , they cannot intersect. Likewise,

P1 and P2 cannot intersect.

figure 4

In this case, the unfolding (P3,F3) is simply the union of (P1,F1) and the transformed (P2,F2), with the edge eP1 (also

eP2 ) converted from a boundary edge of P1 (resp., P2) to a fold in F3.

When eP1 or eP2 is not on the boundary of the convex hull of its unfolding, then naı̈vely following the above procedure

may lead to self-intersection of (P3,F3). However, it is possible to modify (P1,F1) and (P2,F2) without changing their

corresponding folded structures so that the above procedure may be used. Taking the case of (P1,F1), this modification

would consist of constructing an additional unfolding (Pb,Fb) and attaching it to (P1,F1) so that in the folded state eP1

becomes coincident to an edge on the boundary of the combined unfolding’s convex hull. We call (Pb,Fb) a bridge and say

that eP1 has been bridged to the boundary of the convex hull. As we will show in Section 4,

Lemma 2. Given an unfolding (P,F) and an edge eP, it is always possible to bridge eP to the boundary of the convex hull.

The bridge can be constructed in O
(
M2 +(N2 +NM) log(N +M)

)
time.

Combining Lemmas 1 and 2 yields our main result.

Theorem 1. For any unfoldings (P1,F1) and (P2,F2), and edges eP1 in (P1,F1) and eP2 in (P2,F2), there exists an unfolding

(P3,F3) that satisfies Problem 2. Furthermore, this unfolding can be computed in time polynomial in the number of vertices

and edges in the original unfoldings.

Proof. According to Lemma 2, edges eP1 and eP2 can always be bridged to the boundaries of the convex hulls of P1 and P2

respectively. Let eP1
new be the bridge edge on the boundary of the convex hull that coincides with eP1 in the folded state, and

similarly with eP2
new. Applying Lemma 1 to the modified (P1,F1) and (P2,F2) using eP1

new and eP2
new as the edges to join yields

an unfolding (P3,F3) that satisfies the conditions of Problem 2.

Complexity: According to Lemma 2, bridging takes O
(
M2

i +(N2
i +NiMi) log(Ni +Mi)

)
time for each unfolding. Ro-

tating and translating the modified unfoldings so that the new edges to join are coincident takes O(min(N1,N2)) time (we

only have to transform one unfolding). Thus the entire composition algorithm has complexity

O
(
M2

1 +M2
2 +(N2

1 +N1M1) log(N1 +M1)+(N2
2 +N2M2) log(N2 +M2)

)
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4 Constructing the Bridge

This section describes the algorithms and analysis that establish Lemma 2. There are two cases to consider:

1. eP is on the boundary of P

2. eP is a fold line in F

We show that in either case, it is possible to construct a bridge such that in the folded state, an edge on the boundary of the

convex hull of the modified unfolding collapses onto eP.

In the course of the discussion, we make frequent use of paths, which we restrict to be simple polygonal chains. In so

doing, it becomes possible to represent a path p of length n as a finite list of the vertices p = p1 p2 . . . pn in the order they

appear in the chain.

Case 1: Edges on the Boundary

The procedure when eP is a edge on the boundary of P is based on the following lemma.

Lemma 3. If eP is on the boundary (i.e., eP ⊂ ∂P), then there exists a path through the free space beginning at a point on eP

and ending on the boundary of the convex hull of P.

Proof. Because P is a polygon, its convex hull CH(P) is also a polygon. The vertices of CH(P) are a subset of the vertices of

P. If the vertices on the boundary V (P) = {vP
1 ,v

P
2 , . . . ,v

P
n} are numbered in clockwise direction, CH(P) can be represented

as an increasing sequence (i1, i2, . . . , im) such that {vP
i1 ,v

P
i2 , . . . ,v

P
im} are the m vertices of CH(P) in clockwise order. If

eP = (vP
j ,v

P
j+1), let PCH

k be a polygon bounded by the path pk = vP
ik vP

ik+1 . . .v
P
ik+1

vP
ik where ik ≤ j < ik+1. Since eP is an

edge of P, it is a boundary edge of PCH
k . The convex hull edge (vP

ik ,v
P
ik+1

) is also on the boundary of PCH
k . Finally, PCH

k

is not self-intersecting, else P would be self-intersecting or the convex hull would not completely contain P. Given these

characteristics, a path from eP to CH(P) that does not intersect with P or CH(P) except at the terminal vertices must exist

inside PCH
k .

In order to bridge eP to the boundary of the convex hull, we propose to compute such a path and overlay it with

accordion-style pleats (an unfolding consisting of a sequence of non-intersecting folds with fold angles alternating between

π and −π) so that the edge at the end of the path (the convex hull edge) collapses exactly onto eP in the folded state. This is

always possible by virtue of the following lemma.

Lemma 4. Given a starting edge eP and any simple path p = p1 p2 . . . pne such that the first vertex p1 is the midpoint of eP,

there exists a series of pleats such that every pi lies on a fold fi, and in the folded state, all fi are coincident to eP.

Proof. We prove the existence of such a pleat structure by construction. The pleat structure we produce is based on an

isosceles trapezoid. If an isosceles trapezoid is folded with a fold angle of ±π down its axis of symmetry, then its two

legs will coincide in the folded state. In a chain of isosceles trapezoids, where every trapezoid shares only its legs with its

neighbors, folding every trapezoid down its axis symmetry will cause the legs of all the trapezoids to coincide. Therefore, a

chain of folded isosceles trapezoids where every path vertex pi lies on a leg of a trapezoid and eP is also the leg of a trapezoid
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is a pleat structure that satisfies the conditions of this lemma. The full algorithm for constructing this chain can be found in

Alg. 1 and is illustrated in Fig. 5.

figure 5

algorithm 1

Using the perpendicular bisectors of the segments in p (line 3) ensures that the median of every trapezoidal pleat is

exactly one segment of p, and that each newly created edge has as its midpoint the next vertex of p. The resulting pleats

have a width of at most ‖eP‖. Line 9 makes the pleats non-self-intersecting. During the pleat construction in lines 2-8, three

types of self-intersection can occur (see Fig. 5(c)).

1. When an edge to reflect ei intersects with the perpendicular bisector, the resulting pleat must be trimmed to a triangle.

Note that the triangle will still contain the path vertex.

2. When a pleat overlaps with the subsequent segment of p, it results in an intersection between adjacent pleats. Let ei

be the edge shared between the two intersecting pleats, and pi be its midpoint. The two pleats are both trimmed to

non-isosceles trapezoids that meet at pi. This operation alone would cut the bridge into two pieces. Therefore, a second

set of right triangular pleats must be added in the free space next to ei to maintain connectivity. The addition of the

triangular pleats causes a change in orientation of the pleats. If such a change in undesirable, the fold down the middle

of the triangles can also be omitted.

3. When nonadjacent segments of p are close together, their corresponding pleats may overlap. The overlap may be

resolved by dividing the overlapping region along the bisectors of the two conflicting segments of p. Since the path p is

simple, the pleats will remain connected and the fold lines will still contain the path vertices.

In all cases, the modifications do not disconnect the pleats, so the pleats will be a valid unfolding. In addition, the fold

lines remain in the same locations, so the pleat structure will satisfy the conditions of the lemma.

It is also of interest to check the storage size required by the resulting pleat structure and the complexity of Alg. 1.

Lemma 5. Algorithm 1 outputs an unfolding with O(ne) vertices and O(ne) edges.

Proof. Each of the ne iterations of the for loop in lines 2–8 adds a constant number of vertices and edges to the pleat structure.

In line 9, type 1 intersections cause removal of two vertices and one edge for each intersection, of which there can be at most

ne. Type 2 intersections cause addition of two vertices and four edges each, and again there can be at most ne. In type 3

intersections, the number of vertices added to the pleats is equal to twice the number of vertices involved in the intersection,

plus four. We say that a vertex is involved in an intersection if it lies on the boundary of the intersecting region. It is clear

that a vertex can only ever participate in at most one type 3 intersection. Therefore, the total number of vertices added to

correct type 3 intersections is at most O(ne). Since the edges only form chains to connect the new vertices, the number of

edges added is also O(ne). Thus the output unfolding of Alg. 1 has O(ne) vertices and O(ne) edges.

Lemma 6. Algorithm 1 takes O ((ne +ni) logne) time, where ni is the number of self-intersections detected in line 9.
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Proof. The for loop in lines 2–8 is executed ne− 1 times and contains a body that is O(1), so it takes O(ne) time total.

In line 9, the pleats must be checked for each type of intersection. Type 1 and 2 intersections can only occur between

neighboring pleats. They can be found and corrected simply by iterating through the pleats in order, an operation that takes

O(ne) time. Detecting type 3 intersections, on the other hand, requires a check for self-intersection of Pb. Naı̈vely checking

every pair of edges on the boundary of Pb for intersection would take O(n2
e). It is usually faster to use the Bentley-Ottman

sweep line algorithm [22], which is O ((ne +ni) logne) time, where ni is the number of intersections.

Summing over the entire algorithm yields an overall complexity of O ((ne +ni) logne). Note that in the worst case, when

ni is O(n2
e), the complexity can be reduced to O(n2

e) if the naı̈ve collision checking method is used.

We now give the full bridge constructing algorithm (Alg. 2), illustrated in Fig. 6.

figure 6

algorithm 2

Line 1: Find a Path to the Convex Hull Boundary.

According to Lemma 3, a path from eP to the boundary of the convex hull must exist. Theoretically, any such path will

suffice. Since the goal is to overlay the path with pleats, we choose a path surrounded on both sides by as much free space

as possible. A path along the straight skeleton of PCH
k satisfies this criterion.

The straight skeleton of PCH
k is the union of trajectories of vertices of PCH

k when the boundary of PCH
k is shrunk in such

a way that all edges retain their orientation and move towards the interior of PCH
k at the same speed. The straight skeleton

was introduced in [23] as an alternative to the medial axis, which can contain parabolic arcs when PCH
k is nonconvex. As its

name suggests, the straight skeleton contains only line segments. When pk is the boundary of an ne-gon, the straight skeleton

is a tree with (ne− 2) vertices and (2ne− 3) edges that partitions the polygon into ne regions, each of which contains one

segment of pk [23]. It can be computed straightforwardly by simulating the polygon shrinking process in O(n2
e log(ne)) time,

although by using more complex data structures, a complexity of O(n17/11+ε
e ) can be achieved [24].

The path that we use to construct the pleats is the path in the straight skeleton from the region containing eP to the

region containing the convex hull edge (Fig. 6(c)). Since the straight skeleton is a tree, there will only be one such path.

Let p = p1 p2 . . . pne be this path , with the first vertex p1 located at the midpoint of eP, intermediate vertices p2, . . . , pne−1 at

vertices in the straight skeleton, and the final vertex pne on the convex hull edge.

Line 2–3: Overlay Pleats.

Overlay p with accordion-style pleats using Alg. 1. For the last pleat, rather than following the procedure in lines 3–5

of Alg. 1, the point of intersection between the line common to edge ene−1 and the line common to the convex hull edge is

found. Then, ene−1 is rotated about this point of intersection onto the convex hull edge to create ene . This guarantees that

the last edge added to the pleated structure lies on the boundary of the unfolding’s convex hull and that the new pleat is still

an isosceles trapezoid. As in Alg. 1, ene is then assigned a fold angle of π, and a fold line is added on the new pleat’s axis

of symmetry with a fold angle of −π. The last edge’s exact location on the convex hull boundary is not prespecified. Since,
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however, pne−1 is a vertex on the straight skeleton bordering the region containing the convex hull edge, the median of this

pleat will lie entirely inside the free space. The result of this step is a bridge that collapses flat onto the face adjacent to eP.

Line 4: Remove Intersections with the Input Unfolding.

Although the path p lies entirely in the free space, the pleats following p have a width and may intersect with the input

unfolding (Fig. 7). In this case, the overlapping regions can be cut out of the bridge. When this operation causes the bridge

to become disconnected, then pieces that are not connected to eP should also be removed. The bridge will still extend from

eP to the convex hull boundary since p lies entirely in the free space.

figure 7

Finally, if a pleat is so long that it interferes with the folding of P, it can be trimmed or fold lines can be added to crimp

the pleat arbitrarily small (Fig. 8).

figure 8

Lemma 7. Algorithm 2 outputs an unfolding with O(N) vertices and O(M+N) edges.

Proof. According to Lemma 5, since the length of the path p is O(N), the bridge will have O(N) vertices and O(N) edges.

Merging the bridge into the unfolding in line 3 decreases the number of total vertices by two and the number of edges by

one. Finally, removing intersections and trimming pleats in line 4 can add at most N vertices and M edges to the unfolding.

Therefore, the output unfolding must have O(N) vertices and O(M+N) edges.

Lemma 8. Algorithm 2 computes a bridge in O
(
N2 +NM log(N +M)

)
time.

Proof. Line 1 of the algorithm finds a path to the boundary of the convex hull. This requires first computing the convex hull

CH(P), which can be done in O(N) time [25, 26]. The region PCH
k can be found by following the boundary of P starting

at eP until a vertex that is also a vertex of the convex hull is reached. Tracing this path will also take O(N) time and will

result in a region PCH
k bordered by a path of length O(N). The straight skeleton of PCH

k will thus contain O(N) vertices and

O(N) edges [23], and it can be computed in O(N17/11+ε) time [24]. Finally, the path p is found via a search over the straight

skeleton tree that will, in the worst case, require traversal over all the edges in the tree, taking O(N) time. The length of path

p is also O(N).

Line 2 calls Alg. 1, which takes O(N2) time for a path of length O(N) and produces a pleat structure with O(N) vertices

and O(N) edges. Line 4 requires another check for intersections, this time between the boundary of the pleats and the the

boundary of P. Since the only intersections will occur between the pleats and the unfolding (P,F), the number of intersections

is O(NM), and line 4 will take at worst O((N +M +NM) log(N +M)) = O(NM log(N +M)) time [22]. Lines 3 and 5 are

O(1) operations.

Summing over all the lines in the algorithm yields an overall complexity of O(N2 +NM log(N +M)) for Alg. 2.
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Case 2: Edges that are Fold Lines

When eP is not on the boundary of P, then it is not adjacent to any free space and Alg. 2 alone cannot be used. Instead,

we must first construct a boundary edge eP
re f that in the folded state will coincide with eP. This can be achieved by taking

a path through the interior of P to an edge eb on the boundary and reflecting the path out of P. Algorithm 3, illustrated in

Fig. 9, gives the procedure for constructing a bridge for this case.

figure 9

algorithm 3

This case requires construction of the edge-adjacency graph (Fig. 10) of the unfolding (P,F). This is a graph Ge = (V e,E e)

with vertices in V e located at the midpoints of the edges in P and F , and edges E e = {(ve
i ,v

e
j)|ei and e j lie on the boundary

of the same face in (P,F)}. The edge-adjancency graph has the following properties:

• Every edge in E e corresponds to a single face in (P,F)

• A path in Ge corresponds to a connected set of faces in (P,F)

• Ge has M vertices and O(M2) edges

• Ge can be constructed in O(M2) time [27]

figure 10

Line 1: Choose A Boundary Edge.

Before constructing the bridge, it is necessary to choose where to attach it to the unfolding. Since eP is not on the

boundary of P, it is impossible to connect the bridge at eP without causing self-intersection of the final unfolding. Any

boundary edge eb can be used here. For our implementation, we chose eb to minimize the length of the final constructed

bridge. We estimated the length of the bridge using the sum of the lengths of 1) the path from eP to eb in the edge-adjacency

graph Ge and 2) the path from eb to the boundary of the convex hull in the straight skeleton produced when calling Alg. 2.

Note that to calculate this cost, we generate the straight skeleton of every region of free space PCH
k in the unfolding’s convex

hull. There are O(N) such regions.

Line 2: Bridge eb to the Convex Hull Boundary.

Unless eb is on the boundary of P’s convex hull, the faces between eP and eb cannot simply be reflected over eb to make

eP a boundary edge, since this operation may result in intersection with P. Instead, the edge eb must first be bridged to the

boundary of the convex hull using Alg. 2. Let eCH be the resulting edge on the convex hull boundary.

Line 3: Reflect Faces between eP and eCH.

In order to construct a eP
re f on the boundary of the unfolding, reflect all faces between eP and eCH over eCH. These faces

can be found by consulting the edge-adjacency graph Ge. A path in Ge from the vertex corresponding to eP to the vertex

corresponding to eCH yields a set of faces that connect eP and eCH. Since eCH is on the convex hull boundary, the reflected

faces will not intersect with the rest of the unfolding.
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Line 4: Bridge eP
re f to the Convex Hull Boundary.

The result of line 3 is that eP
re f is now on the boundary of P but not necessarily of the convex hull, reducing the situation

to Case 1. In the folded state, the reflected path will fold flat along the surface of the input folded structure Q so that the

reflected edge is coincident eP. Thus any material attached to eP
re f is as if it were added at eP.

Lemma 9. Algorithm 3 outputs an unfolding with O(N) vertices and O(M+N) edges.

Proof. According to Lemma 7, line 2 will increase the size of the unfolding to have O(N) vertices and O(M +N) edges.

Since line 3 reflects only faces that already exist, it can at most double the size of the unfolding. A final application of Alg. 2

in line 4 yields an output unfolding with O(N) vertices and O(M+N) edges.

Lemma 10. Algorithm 3 computes a bridge in O
(
M2 +(N2 +NM) log(N +M)

)
time.

Proof. Line 1 of the algorithm chooses a boundary edge eb. This requires constructing the edge-adjacency graph of the

unfolding in O(M2) time, as well as straight skeletons in O(N17/11+ε) time. The closest boundary edge to eP can be found

on the resulting O(M+N)-vertex, O(M2 +N)-edge graph in O((M+N)2) time using Dijkstra’s algorithm [28].

Line 2 calls Alg. 2, which by Lemmas 7 and 8 produces an unfolding with O(N) vertices and O(N +M) edges in

O
(
N2 +NM log(N +M)

)
time. Since the path from eP to eb was already calculated in line 1, line 3 incurs only the cost of re-

flecting O(N+M) faces in O(N+M) time. Finally, line 4 takes O
(
N2 +(N2 +NM) log(N +M)

)
=O

(
(N2 +NM) log(N +M)

)
,

according to Lemma 8.

Summing over all the lines in the algorithm yields an overall complexity of O
(
M2 +(N2 +NM) log(N +M)

)
for Alg. 3.

4.1 Summary

We have now provided enough detail to support Lemma 2:

Lemma 2. Given an unfolding (P,F) and an edge eP, it is always possible to bridge eP to the boundary of the convex hull.

The bridge can be constructed in O
(
M2 +(N2 +NM) log(N +M)

)
time.

Proof. The previous sections detail how to construct a bridge when eP is a boundary edge or eP is a fold line. The edge to

join eP must fall into one of these cases. It is therefore always possible to bridge eP to the convex hull.

Complexity: According to Lemma 8, constructing a bridge when eP is a boundary edge takes O
(
N2 +NM log(N +M)

)
time. Lemma 10 states that constructing a bridge when eP is a fold line takes O

(
M2 +(N2 +NM) log(N +M)

)
time. Which

of these two cases is applicable can be determined by consulting the list B(P,F) in O(1) time. Thus, the overall complexity of

constructing a bridge for arbitrary eP is O
(
M2 +(N2 +NM) log(N +M)

)
.

5 Experimental Results

figure 11
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The proposed algorithm was implemented in MATLAB and tested on various compositions. Figure 11 shows the input

unfoldings and the composition for each test. Cut lines on the boundary of the unfoldings are shown as solid, and folds

are shown in dotted lines. The edges to join are shown in bold on the input unfoldings. The expected folded states of each

generated unfolding are simulated and verified via physical models folded from poster board.

All final folded states are, as expected, the two inputted surfaces connected along the specified edge. Since the joined

edges act as a hinge joint, the angle of the input surfaces relative to each other in the folded state are not fixed. This effect

can be clearly seen in the physical models, where the stiffness of the material used prevented faces from resting coincident as

they do in the simulated folded states. The constructed bridges (shaded) are indeed a series of pleats connecting the edges to

join to the boundaries of the convex hulls of their respective unfoldings. The fourth row of Fig. 11 shows the compositions

with only the bridges folded. The edges to join coincide with each other in the folded state.

Figure 11(a) joining two cubes is an example of Alg. 2. Both edges to join are on the boundaries of their unfoldings.

Pleats are added to the unfolding on the right since the edge to join is not already on the boundary of the convex hull. In the

folded state, these pleats are flattened between the two cubes.

Figures 11(b)–(d) demonstrate Alg. 3, when an edge to join is on the interior of the unfolding. The square pyramid in

Fig. 11(b) is the same one considered in Fig. 9. Not only are pleats added but a face of the unfolding is reflected in the bridge

construction. In the folded state, this face lies flat against the surface of the square pyramid so that one side is doubly covered.

Similarly, for the insect and gripper in Fig. 11(d), faces between the edges to join and the boundaries of their unfoldings are

reflected to create the bridge. Since the boundary edges where the bridges are attached are already on the convex hulls of the

unfoldings, no extra pleats are added.

6 Discussion and Future Work

This paper demonstrates that a connected composite unfolding satisfying the requirements of Problem 2 exists. Al-

though an unfolding could be found in every case, however, it was not necessarily the most efficient unfolding in terms of

material usage. For example, Fig. 11(a) shows a composition of two cubes that could be achieved simply by joining the two

input unfoldings along the chosen edges. The unfolding produced by our algorithm uses extra pleats since it seeks to join

unfoldings at their convex hulls.

In addition, practically, factors other than connectivity between the two input unfoldings must be taken into account.

For example, when choosing the boundary edge in Alg. 3, we minimized the amount of extra material added. Other times,

it may be more desirable to minimize the number of layers or to maximize the width of pleats. Each of these optimization

problems yields a different choice when performing Alg. 2 or 3. For example, even if eP is on the boundary, taking a longer

path through the interior of the unfolding to an area with a greater amount of free space may yield wider pleats or fewer

layers, so we may want to use Alg. 3 even if Alg. 2 is applicable. This was the approach used for the test in Fig. 11(c).

This work considers connecting two unfoldings along an edge, which is the minimum attachment necessary for two

surfaces to be joined. This leads to a folded state where the two input surfaces can move relative to each other. Another

type of joining is a face-joining, where the two input surfaces would be attached along one or multiple faces and would
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fixed relative to each other. An extension of the proposed algorithm to face-joinings is straightforward: repeat the algorithm

for every boundary edge of the two connecting surfaces, choose the result that minimizes the amount of added material (or

optimizes some other metric), and fix the hinge fold angles so that the two surfaces coincide. Of course, while theoretically

the folded state would in this case be constrained so that the joined surfaces touch, a physical instantiation would be no

stiffer than that produced when seeking a hinge joint alone. We are currently investigating alternative methods for composing

unfoldings when joining occur along faces.

Finally, the results of this algorithm are restricted in that the generated unfolding must contain (P1,F1) and (P2,F2) in

their entirety. When humans compose origami designs, they often rearrange the unfoldings and change the shape of the free

space to achieve more efficient composite unfoldings (see, for example, Fig. 1). As discussed in Section 1, depending on

the application, certain folds should not be cut; however, a 3-D surface often has several equivalent unfoldings that yield the

same mechanical strength. In order for this algorithm to be useful practically, we will analyze the mechanical properties of

materials that have been folded as compared to cut and develop a model that will allow us to generate equivalent unfoldings.

7 Conclusion

This paper addresses automatic composition of unfoldings of 3-D surfaces. We show that given the unfoldings of two

3-D surfaces, it is always possible to construct a bridge between them such that the folded state is the two originals connected

along a hinge joint, and we provide a polynomial-time algorithm to generate the composite unfolding. The algorithm was

tested on a variety of simple compositions, demonstrating that it can indeed be used to generate one-piece unfoldings of

composed surfaces. The algorithm shows promise for automated design of folded structures in the future.
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Figure Captions

1. Left: Walking and gripper robots folded out of the patterns shown. Right: The composition, a walking-gripping robot,

whose unfolding was designed manually. Our goal is to generate such an unfolding automatically. Credit: Robots were

designed by Cagdas Onal and Michael Tolley.

2. Q can be unfolded into P if Q is the image of a folded state φF(P)

3. A fold f has a fold line and a fold angle

4. Two convex polygons placed next to each other are guaranteed not to intersect

5. Algorithm 1: Constructing pleats to follow a path. (a) The edge eP and the path p to follow. (b) Reflected edges ei (solid)

and perpendicular bisectors e⊥i (dotted). (c) Resulting pleats. Types 1, 2, and 3 self-intersections are shaded. (d) Pleats

with self-intersections corrected. (e) Folded state of pleats. All ei coincide.

6. Algorithm 2: Bridging an edge on the boundary of the unfolding to the boundary of the convex hull. (a) Original fold

pattern. The edge to join eP is bold and the convex hull is shown in gray. (b) The region PCH
k (shaded) and its straight

skeleton. (c) The path p from eP to the boundary of the convex hull. (d) Pleats tiled along the path. (e) Output unfolding

with the bridge added.

7. (a) A bridge (shaded) that intersects with (P,F). (b) The offending region is removed.

8. A long pleat. Top: The unfolding with offending pleat (shaded). Bottom: Folded state. (a) In the folded state, the pleat

protrudes outside the adjacent face. (b) It can be crimped to not interfere with other folds and (c) trimmed to avoid

protrusions.

9. Algorithm 3: Bridging an edge on the interior of the unfolding to the boundary of the convex hull. (a) Original fold

pattern. The edge to join eP is bold and the convex hull is shown in gray. (b) The edge-adjacency graph with the path

from eP to eb in bold. (c) Pleats attached to eb using Alg. 2. (d) The accordion path and interior faces reflected over

the boundary of the convex hull. The convex hull is also updated. (e) Pleats attached to eP
re f using Alg. 2. (f) Output

unfolding with the bridge added.

10. Example edge-adjacency graph

11. Fold patterns generated by this algorithm. Top: Input fold patterns for the polyhedral complexes to join. The bold edges

are the edges to join. Second row: The generated composite unfolding. Bridges constructed by our algorithm are shaded.

Third row: The folded state of the composite unfolding. Fourth row: Physical model of the composition with just the

bridge folded. Bottom: Physical models of the input surfaces and the composition folded from poster board.
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Algorithm 1: CREATEPLEATS(eP, p)

Data: eP = (vP
1 ,v

P
2 ) = starting edge

p = p1 p2 . . . pne = path to follow
Result: unfolding (Pb,Fb) = pleats satisfying

Lemma 4

// Beginning with eP,
1 v1,1← vP

1 ; v1,2← vP
2 ;

// Compute fold line locations
2 for i = 1, . . . ,ne−1 do
3 `⊥i ← perpendicular bisector of segment pi pi+1;
4 vi+1,1← reflection of vi,1 over `⊥i ;
5 vi+1,2← reflection of vi,2 over `⊥i ;
6 e⊥i ←

( 1
2 (vi,1 + vi+1,1) ,

1
2 (vi,2 + vi+1,2)

)
;

7 ei+1← (vi+1,1,vi+1,2);
8 end
9 Remove intersections;
// Unfolding of pleated structure

10 Pb← polygon bounded by the path
v1,1v2,1 . . .vne,1vne,2 . . .v2,2v1,2;

11 Fb←
{
(e⊥1 ,−π)

}
∪
⋃

i=2,...,ne−1
{
(ei,π),(e⊥i ,−π)

}
;
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Algorithm 2: BRIDGEFROMBOUNDARY((P,F),eP)

Data: (P,F) = input unfolding
eP = boundary edge to bridge

Result: (Pnew,Fnew) = unfolding containing (P,F)
eP

new = edge on CH(Pnew) that folds onto eP

1 p← path from eP to CH(P) (Lemma 3);
2 (Pb,Fb)←CREATEPLEATS(eP, p);
3 Pnew← P∪Pb; Fnew← F ∪Fb∪{(eP,π)};
4 Remove intersections;
5 eP

new← ene created during bridge construction in
line 2;
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Algorithm 3: BRIDGEFROMFOLDLINE((P,F),eP)

Data: (P,F) = input unfolding
eP = fold line edge to bridge

Result: (Pnew,Fnew) = unfolding containing (P,F)
eP

new = edge on CH(Pnew) that folds onto eP

1 eb← a boundary edge on P;
2 {(P2,F2),eCH}←

BRIDGEFROMBOUNDARY((P,F),eb);
3 {(P3,F3),eP

re f }←REFLECTFACES((P2,F2),eP,eCH);

4 {(Pnew,Fnew),eP
new}←

BRIDGEFROMBOUNDARY((P3,F3),eP
re f );
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Fig. 2. fig2.eps
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Fig. 3. fig3.eps
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Fig. 4. fig4.eps
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Fig. 5. fig5.eps
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Fig. 6. fig6.eps
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Fig. 7. fig7.eps
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(a) Before (b) Crimped (c) Trimmed

Fig. 8. fig8.eps
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Fig. 9. fig9.eps
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(a) Unfolding (b) Edge-adjacency graph Ge

Fig. 10. fig10.eps
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(a)  Two cubes (b)  Cube and
square pyramid

(c)  Two truncated
cuboctohedra

(d)  Walking and
gripping robots

Fig. 11. fig11.eps
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