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Abstract. We prove that the pleated hyperbolic
paraboloid, a familiar origami model known since 1927,
in fact cannot be folded with the standard crease pattern in
the standard mathematical model of zero-thickness paper.
In contrast, we show that the model can be folded with
additional creases, suggesting that real paper “folds” into
this model via small such creases. We conjecture that the
circular version of this model, consisting of concentric
circular creases, also folds without extra creases.

At the heart of our results is a new structural theorem
characterizing uncreased intrinsically flat surfaces—the
portions of paper between the creases. Differential ge-
ometry has much to say about the local behavior of such
surfaces when they are sufficiently smooth, e.g., that they
are torsal ruled. But this classic result is simply false in
the context of the whole surface. Our structural character-
ization tells the whole story, and even applies to surfaces
with discontinuities in the second derivative. We use our
theorem to prove fundamental properties about how paper
folds, for example, that straight creases on the piece of
paper must remain piecewise-straight by folding.

1. Introduction. A fascinating family of pleated
origami models use extremely simple crease patterns—
repeated concentric shapes, alternating mountain and
valley—yet automatically fold into interesting 3D
shapes. The most well-known is the pleated hyperbolic
paraboloid, where the crease pattern is concentric squares
and their diagonals. As the name suggests, it has long
been conjectured, but never formally established, that this
model approximates a hyperbolic paraboloid. More im-
pressive (but somewhat harder to fold) is the circular
pleat, where the crease pattern is simply concentric cir-
cles, with a circular hole cut out of the center. Both of
these models date back to the Bauhaus, from a preliminary
course in paper study taught by Josef Albers in 1927-1928
[Win69, p. 434], and taught again later at Black Mountain
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College in 1937-1938 [AdI04, pp. 33, 73]; see [DDOS].
These models owe their popularity today to origamist
Thoki Yenn, who started distributing the model sometime
before 1989. Examples of their use and extension for al-
gorithmic sculpture include [DDL99, [ KDDOS]].
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(a) Standard mountain- (b) Photograph of physical model.

valley pattern. [Jenna Fizel]

Figure 1: Pleated hyperbolic paraboloid.

(a) Mountain-valley pattern.

(b) Photograph of physical model.
[Jenna Fizel]

Figure 2: Circular pleat.

The magic of these models is that most of the ac-
tual folding happens by the physics of paper itself; the
origamist simply puts all the creases in and lets go. Pa-
per is normally elastic: try wrapping a paper sheet around
a cylinder, and then letting go—it returns to its original
state. But creases plastically deform the paper beyond its
yield point, effectively resetting the elastic memory of pa-
per to anonzero angle. Try creasing a paper sheet and then
letting go—it stays folded at the crease. The harder you
press the crease, the larger the desired fold angle. What
happens in the pleated origami models is that the paper
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tries to stay flat in the uncreased portions, while trying to
stay folded at the creases, and physics computes a con-
figuration that balances these forces in equilibrium (with
locally minimum free energy).

But some mathematical origamists have wondered over
the years [Wer(OS]]: do these models actually exist? Is it
really possible to fold a piece of paper along exactly the
creases in the crease pattern of Figures [T]and 2] The first
two authors have always suspected that both models ex-
isted, or at least that one existed if and only if the other
did. But we were wrong.

2. Our Results. We prove that the hyperbolic-
paraboloid crease pattern of Figure [I(a)] does not fold
using exactly the given creases. In proving this im-
possibility, we develop a structural characterization of
how uncreased paper can fold (hence the title of this
paper). Surprisingly, such a characterization has not
been obtained before. An intuitive understanding (often
misquoted) is that paper folds like a ruled surface, but that
claim is only true locally (infinitesimally) about every
point. When the paper is not smooth or has zero principal
curvature at some points, the truth gets even subtler.
We correct both of these misunderstandings by handling
nonsmooth (but uncreased) surfaces, and by stating a
local structure theorem flexible enough to handle zero
curvatures and all other edge cases of uncreased surfaces.

In contrast, we conjecture that the circular-pleat crease
pattern of Figure 2(a) folds using exactly the given
creases, when there is a hole cut out of the center. A
proof of this would be the first proof of existence of a
curved-crease origami model (with more than one crease)
of which we are aware. Existing work characterizes the
local folding behavior in a narrow strip around a curved
crease, and the challenge is to extend this local study to a
globally consistent folding of the entire crease pattern.

Another natural remaining question is what actually
happens to a real pleated hyperbolic paraboloid like Fig-
ure [[(b)) One conjecture is that the paper uses extra
creases (discontinuities in the first derivative), possibly
many very small ones. We prove that, indeed, simply tri-
angulating the crease pattern and replacing the four cen-
tral triangles with just two triangles, results in foldable
crease pattern, shown in Figure[3] Our proof of this result
is quite different in character, in that it is purely compu-
tational instead of analytical. We use interval arithmetic
to establish with certainty that the exact object exists for
many parameter values, and its coordinates could even
be expressed by radical expressions in principle, but we
are able only to compute arbitrarily close approximations,
shown in Figure ]
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(a) Asymmetric triangulation. (b) Alternating asymmetric tri-

angulation.

Figure 3: Two foldable triangulations of the hyperbolic
paraboloid crease pattern (less one diagonal in the center).

(a) Asymmetric triangulation, (b) Alternating asymmetric trian-
0 =8°,n =16. gulation, 8 = 30°, n = 16.

Figure 4: Proper foldings of triangulated hyperbolic
paraboloids.

References.

[AdlO4] Esther Dora Adler. “A New Unity!” The Art and
Pedagogy of Josef Albers. PhD thesis, University of
Maryland, 2004.

Erik D. Demaine and Martin L. Demaine. History
of curved origami sculpture. http://erikdemaine.org/
curved/history/, 2008.

Erik D. Demaine, Martin L. Demaine, and Anna
Lubiw. Polyhedral sculptures with hyperbolic
paraboloids. In Proceedings of the 2nd Annual Con-
ference of BRIDGES: Mathematical Connections in
Art, Music, and Science (BRIDGES’99), pages 91—
100, Winfield, Kansas, July 30-August 1 1999.
Duks Koschitz, Erik D. Demaine, and Martin L. De-
maine. Curved crease origami. In Abstracts from Ad-
vances in Architectural Geometry (AAG 2008), pages
29-32, Vienna, Austria, September 13-16 2008.
Margaret Wertheim.  Origami as the shape of
things to come. The New York Times, February 15
2005. http://www.nytimes.com/2005/02/15/science/
150rigami.html.

Hans M. Wingler. Bauhaus: Weimar, Dessau, Berlin,
Chicago. MIT Press, 1969.

[DDO8]

[DDL99]

[KDDO8]

[Wer05]

[Win69]


http://erikdemaine.org/curved/history/
http://erikdemaine.org/curved/history/
http://www.nytimes.com/2005/02/15/science/15origami.html
http://www.nytimes.com/2005/02/15/science/15origami.html

