
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Computing 3SAT on a Fold-and-Cut Machine

Byoungkwon An∗ Erik D. Demaine∗ Martin L. Demaine∗ Jason S. Ku∗

Abstract

This paper introduces a computational model called a
fold-and-cut machine which allows as operations simple
folds and unfolds, straight-line cuts, and inspection for a
through-hole (hole through all the layers of paper). We
show that a (deterministic) fold-and-cut machine can
decide a 3SAT instance with n variables and m clauses
using O(nm+m2) operations (with just one cut and in-
spection), showing that the machine is at least as pow-
erful as a nondeterministic Turing machine.

1 Introduction

Computational origami [DO08] is usually about using
algorithms (on traditional computers) to design/analyze
paper foldings. But what if we view the piece of paper as
the computer itself, with folding as one of the operations
provided by the model of computation? In this paper,
we initiate the study of what computation is possible in
such folding models.

A fold-and-cut machine operates on a polygonal 2D
piece of paper, supporting four operations—Fold, Un-
fold, Cut, Look—that modify the current flat folded
state of the piece of paper (initially flat) and the piece
of paper itself.

1. A Fold operation is any simple fold [ADK,
ABD+04]: a fold of some number of layers along
a straight line by ±180◦.

2. An Unfold operation undoes a Fold operation.

3. A Cut operation is a complete straight-line cut
through (all layers of) the current flat folding, dis-
carding all but one specified piece.

4. A Look operation decides whether the current flat
folding has a through-hole, i.e., has nonzero genus
(a hole) when imagining all touching layers to be
fused together.

Each line (in a Fold or Cut operation) is specified by
a distinct pair of points with integer coordinates using a
polynomial number of bits. The initial polygon of paper
is similarly described by integer vertex coordinates each
using a polynomial number of bits. (In fact, in our

∗CSAIL, Massachusetts Institute of Technology, {dran,
edemaine,mdemaine,jasonku}@csail.mit.edu

constructions, the paper will be a rectangle and the lines
will all be horizontal, vertical, or 45◦ diagonal.)

Models involving just Fold and Unfold operations
have been considered before [CDD+11, Ueh11], but
where the goal was to achieve certain geometric folding
properties instead of computation. We add the ability
to make cuts, though in fact we will use just a sin-
gle cut, in the style of the fold-and-one-cut problem
[DO08, DDL98, BDEH01], also previously considered
in the context of simple folds [DDH+10], but with geo-
metric instead of computational goals.

A 3SAT instance is a Boolean formula over n vari-
ables X = {x1, x2, . . . , xn} in conjunctive normal form
(CNF):

m∧
i=1

(ai ∨ bi ∨ ci), (1)

where ai, bi, ci are called literals, each corresponding to
some variable in X, or its negation. Each term (ai ∨
bi ∨ ci) is called a CNF clause. A 3SAT instance is
satisfiable if there exists an assignment of each variable
as either 0 or 1 such that the Boolean formula evaluates
to 1. Deciding satisfiability of a given 3SAT instance is
a classic NP-complete problem [GJ79].

Theorem 1 A fold-and-cut machine can decide 3SAT
in O(nm+m2) operations, using just one Cut and just
one Look.

As a consequence, all decision problems in NP can
be solved by a polynomial number of operations on a
fold-and-cut machine, making it at least as powerful as
a nondeterministic Turing machine.

Inspired by the recently introduced fold-and-one-
punch problem [ADD+], we also consider an alternative
folding model of computation that replaces the Cut op-
eration as follows:

3′. A Punch operation cuts a point hole (or a small
circular hole) through (all layers of) the current flat
folding.

(Again the point has integer coordinates specified by a
polynomial number of bits.) We prove that Theorem 1
also holds on this fold-and-punch machine. In fact, this
construction works even with “1.5D paper”: a narrow
rectangular strip that can be folded only perpendicular
to the strip direction, but which remains connected after
punching a hole.

{dran,edemaine,mdemaine,jasonku}@csail.mit.edu
{dran,edemaine,mdemaine,jasonku}@csail.mit.edu


29th Canadian Conference on Computational Geometry, 2017

This paper is organized as follows. Section 2 in-
troduces the structure of our approach, representing
a 3SAT instance as a DNF formula with a symmetric
clause ordering. Section 3 describes a set of holes in a
piece of paper that correspond to a 3SAT instance. Sec-
tion 4 shows that the resulting paper can be folded so
that the outcome of a single Look operation is equiv-
alent to the solution to the 3SAT instance. Section 5
shows how to produce the described hole pattern using
polynomially many Fold operations and one Cut op-
eration. Section 6 puts all of these pieces together to
prove the theorem. We conclude in Section 7 with open
problems for future work.

2 Approach

Conceptually, we use the known conversion from
any 3CNF formula into disjunctive normal form
(DNF) [GJ79], which results in an OR of 3m DNF
clauses, where each DNF clause is an AND of m of the
CNF literals, one from each CNF clause. Our reduc-
tion from 3SAT cannot afford to actually compute this
DNF formula, but the fold-and-cut machine we produce
will end up physically constructing a truth table for the
DNF formula where holes represent 1s.

Deciding whether the 3SAT instance has a solution
is equivalent to finding an assignment of the variables
α : X → {0, 1} for which some DNF clause evalu-
ates to 1. There are 3m DNF clauses and 2n possi-
ble assignments of variables. Let d(i, j, k) represent the
Boolean value of the ith CNF clause’s literal present
in the jth DNF clause when using the kth assignment
for the variables, with i ∈ [1,m], j ∈ [1, 3m], and
k ∈ [1, 2n]. In particular, if the literal from the ith
CNF clause present in the jth DNF clause is variable
xr, then d(i, j, k) = αk(xr), while if the literal is the
negation of xr, then d(i, j, k) = ¬αk(xr). Thus, there
are m(3m)(2n) possible d(i, j, k). Then the DNF for-
mula associated with a 3SAT instance is equivalent to
evaluating the exponentially sized Boolean formula:

2n∨
k=1

3m∨
j=1

m∧
i=1

d(i, j, k). (2)

To prove Theorem 1, we will use a fold-and-cut ma-
chine to operate on a rectangular strip of paper P with
unit width and length m(3m)(2(2n) + 2). We will con-
ceptually divide P evenly into unit-square cells. We
will associate two cells with each possible d(i, j, k), with
the m(3m)2 remaining cells not associated with any
d(i, j, k). We will cut a hole in the center of m(3m)(2n)
cells of P , resulting in a modified paper P ′, cutting a
hole exactly when a cell has a d(i, j, k) associated with
it which evaluates to 1.

To decide whether the 3SAT instance has a satisfying
assignment, we will give a folding of P ′ such that every

d(i, j, k)

...

...

...
...

...
...

P C(i) L(i, j)

L(i, j)

L(i, 1)

L(i, 3m)
d(i, j, 2n)

V (i, j)

V (i, j)

V (i, j)

d(i, j, 1)spacer

spacer

C(i)

C(1)

C(m)

Figure 1: Layout of blocks and cells of P .

cell overlaps with exactly m − 1 other cells. Further,
any cell associated with d(i, j, k) overlaps with cells as-
sociated with each d(i′, j, k) for i′ ∈ [1,m]. Thus, if the
folding has a through-hole passing through a cell cor-
responding to d(i, j, k), then DNF clause j evaluates to
1 under variable assignment k. And if a cell associated
with d(i, j, k) does not have a through-hole, then DNF
clause j evaluates to 0 under variable assignment k. A
Look operation restricted to the folded location of a
cell associated with d(i, j, k) will evaluate the formula

m∧
i=1

d(i, j, k), (3)

while the entire Look operation performs the same test
in parallel for all DNF clauses j, over all variable assign-
ments k. We will explicitly evaluate each of the expo-
nentially many d(i, j, k) values in some cell, but we will
be able to produce them using only polynomially many
operations.

3 Hole Locations

First, we will describe how cells of P are associated with
each d(i, j, k); see Figure 1. Conceptually, we will di-
vide P into consecutive equally-sized sets of cells called



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

blocks. Dividing P into a different number of equally-
sized sets will partition P at different levels of detail,
into blocks of different size. At the coarsest level, the
paper is divided into m CNF blocks, one for each 3CNF
clause. Each CNF block C(i) contains 3m literal blocks,
one for each DNF clause. Each literal block L(i, j) con-
tains two variable blocks V (i, j) and V (i, j), which are
mirror reflections of each other. Each variable block
V (i, j) is made up of 2n + 1 cells.

The first cell σ(i, j, 1) in a variable block is a blank
cell not associated with any d(i, j, k), which we call a
spacer. The remaining 2n cells in variable block V (i, j)
are associated with d(i, j, k), one for each variable as-
signment, with cell σ(i, j, k+1) associated with d(i, j, k).
The desired hole pattern P ′ contains a hole in a cell ex-
actly when it is associated with a d(i, j, k) equal to 1.
We call a cell associated with a d(i, j, k) equal to 1 a
hole cell, with blank cells referring to any other cell. We
will show in Section 4 that we can fold P ′ so that a
Look operation can decide the 3SAT instance, and in
Section 5 we can produce P ′ from P in polynomially
many operations.

We have not yet fully specified the hole pattern for
P ′ because we have not fixed an ordering for the DNF
clauses or the variable assignments. For our construc-
tion, the DNF clauses and the variable assignments
must be ordered in a highly symmetric way to allow
blocks to be aligned with a polynomial number of folds,
though the CNF clauses may be ordered arbitrarily. We
order the DNF clauses in the following way. Let DNF
clause D(j) be defined as:

D(j) =

m∧
i=1

l(i, j), (4)

where l(i, j) represents the literal from CNF clause i
appearing in DNF clause j, according to:

l(i, j) =


ai if

⌊
j−1
3m−i

⌋
≡ 0 or 5 mod 6

bi if
⌊

j−1
3m−i

⌋
≡ 1 or 4 mod 6

ci if
⌊

j−1
3m−i

⌋
≡ 2 or 3 mod 6

. (5)

Conceptually, this order corresponds to the following
layout. Each CNF block C(i) contains 3i−1 unit blocks
made up of three adjacent subunit blocks, one for each
literal in {ai, bi, ci}. Each subunit block contains 3m−i

literal blocks, all of which are associated with the same
literal. Further, every unit block is a reflection of each
adjacent unit block.

For variable assignments, we represent an assignment
as a binary string and list them in lexicographical order,
with the first variable being the left most digit in the
binary string. So for a 3SAT instance with 5 variables,
the first variable assignment among the 2n assignments
will be 00000, while the tenth variable assignment will
be 01001.

C(1)

i1 m· · ·· · ·

d(i, j, k)

m

i=1

d(i, j, k)

v(P )

literalL(i, j)
stack

Figure 2: Flat folding v(P ′) aligns cell stacks containing
cells corresponding to d(i, j, k) for all i ∈ [1,m], and in
doing so, enables verification of the instance using a
single Look operation.

4 Verification

Let v(P ′) be a flat folding of P ′ produced by pleating
the m CNF blocks back and forth on top of each other.
This folding can easily be produced by a sequence of
simple folds by folding each crease in order from top to
bottom.

Flat-folding v(P ′) has m layers uniformly at every
point. In particular, every cell folds onto m − 1 other
cells, while each literal block overlaps and aligns with
m − 1 other literal blocks, one from each CNF block.
We call a set of aligned and overlapping blocks of the
same size a stack. For example, we call m overlapping
literal blocks a literal stack.

Lemma 2 Flat-folding v(P ′) has a through-hole if and
only if the 3SAT instance associated with P ′ is satisfi-
able.

Proof. We first prove a bijection between literal stacks
and DNF clauses, by showing that, for any DNF clause
D(j), there exists a literal stack containing literal blocks
corresponding to the CNF clause literals present in
D(j). Let l(i, j) be the literal in D(j) associated with
CNF clause i. CNF block C(1) contains a single unit
block with three subunit blocks, one for each literal.
If some literal stack represents D(j), it must contain a
literal block from the subunit block corresponding to
literal l(1, j). Now consider CNF block C(i) for i > 1.
By construction, every unit block of C(i) is exactly the
same size as a subunit block of C(i− 1), and every sub-
unit block of C(i − 1) will exactly align and overlap
with some unit block of C(i) in v(P ′). Thus by induc-
tion, there exists a literal stack containing each l(i, j) in
D(j). There are 3m DNF clauses and 3m literal stacks,
so there is a bijection between them.



29th Canadian Conference on Computational Geometry, 2017

Lastly, given a literal stack corresponding to DNF
clause D(j), we show that there is a through-hole in
the stack if and only if the DNF clause is satisfiable.
Each literal block is mirror symmetric containing a vari-
able block V (i, j) and its reflection V (i, j), and variable
blocks exactly overlap other variable blocks in two sym-
metric stacks. In particular, within a variable stack,
each cell associated with d(i, j, k) overlaps a cell corre-
sponding to every other d(i′, j, k) for i′ ∈ [1,m], and
d(i, j, k) has a hole exactly when d(i, j, k) is 1 by con-
struction. Thus, if D(j) evaluates to 1 using variable
assignment k, then there will be a through-hole, and
there will be no through-hole if some d(i, j, k) in the
variable stack is 0, completing the proof. �

5 Making Holes

In this section, we show how to produce the holes in P ′

from paper P in O(nm+m2) Fold operations and one
Cut operation. We will fold P in two stages. First, we
will show how to fold a CNF block C(i) into three lit-
eral stacks, with each literal stack containing the 3m−1

literal blocks in C(i) corresponding to the same literal.
Second, we will show how to fold a literal block L(i, j)
to align all hole cells to the same location.

5.1 Align Literals

Given a CNF block C(i), we align literal blocks cor-
responding to the same literal by folding along a se-
quence of symmetric two-fold pleats. A symmetric two-
fold pleat folds a block along two lines dividing the block
into equal thirds. The upper crease will be a valley fold,
and the lower crease will be a mountain fold.

Lemma 3 We can fold any CNF block C(i) into three
adjacent literal stacks using a sequence of 2(i − 1) +
6(m− i) simple folds, with each literal stack containing
the 3m−1 literal blocks corresponding to the same literal.

Proof. The folding follows directly from the order of
D(j) defined by l(i, j); see Figure 3. First, we overlap
every unit block on top of one another by repeatedly
folding through all layers along i − 1 symmetric two-
fold pleats. These folds overlap the unit blocks in the
same orientation because unit blocks alternate in orien-
tation in the layout defined by l(i, j). Then, we overlap
the literal blocks in each of the three adjacent subunit
blocks by using m− i symmetric two-fold pleats. Each
symmetric two-fold pleat can be folded using two simple
folds by first valley folding along the higher fold, then
folding back down along the lower fold. The first step
uses 2(i − 1) Fold operations, while the second step
uses 3(2)(m− i). �

repeatrepeat

(a) (b) (c)

unit

subunit

literal
stacks

ai

bi

ci

Figure 3: Aligning literal blocks associated with the
same literal in the CNF clause corresponding with CNF
block C(i). (a) Align unit blocks from C(i) on top of
each other using i− 1 pleats. (b) Collapse each subunit
stack into one literal stack using m − i pleats. (c) The
folding after aligning the literal blocks into three stacks.

5.2 Align Hole Locations

We align hole locations of a literal block using the fol-
lowing procedure; see Figure 4. First, valley fold the
literal block down along its lower boundary, and fold
back up along the line separating V (i, j) and V (i, j).
Because V (i, j) and V (i, j) are symmetric (recall that
they are mirror reflections of each other), the result-
ing flat-folded pleat will have through-holes at the same
locations as V (i, j).

Lemma 4 We can fold any variable block V (i, j) onto
the first three cell locations of the block using at most
2n simple folds, such that a cell folds to the second cell
location from the top if and only if it is a hole cell.

Proof. We prove by constructing such a folding. By
definition, each variable block comprises a spacer cell
followed by 2n cells, with cell σ(i, j, k + 1) associated
with d(i, j, k). Also, each variable block is associated
with some variable xr or its negation. Because of the
lexicographical order of the variable assignments, the



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

V (i, j)

spacer

B

B

H

H

H

2n−r

2n−r−1

repeat

repeat

(a) (b) (c) (d)

r = nr = n

(e)

Figure 4: Aligning hole cells in literal block L(i, j). (a)
Fold L(i, j) to align variable blocks. (b) Pre-process
leading or trailing blank cells B or B′ of V (i, j). (c)
Align hole cells by folding H in half n − 1 times. (d)
Get rid of extra blank cells by folding the excess with
height 2n−r−1 in half n− r−1 times. (e) Final state for
two cases, when r 6= and when r = n.

hole pattern described by d(i, j, k) within the variable
block is an alternating sequence of 2n−r hole cells and
2n−r blank cells. If the variable block is associated with
variable xr, then cell σ(i, j, 1) is a blank cell, while if
the block is associated with ¬xr, then σ(i, j, 1) is a hole
cell.

First, we perform a preprocessing step. Let B be
the block of blank cells between the spacer and the first
hole cell exclusive. If B is nonempty, it has length 2n−r.
Valley fold B up along its top boundary line, and val-
ley fold it back down along the line dividing its cells
equally. This aligns the first hole cell onto the second
cell location. Otherwise, let B′ be the block of blank
cells after the last hole cell. If B′ is nonempty, it has
length 2n−r. Valley fold B′ in half, bringing its bottom
edge to its top. Note that exactly one of B and B′ will

Figure 5: How to cut a diamond-shaped hole.

be nonempty.
Second, we perform hole alignment. Let H be the

block of cells between the first hole cell and the last
hole cell inclusive. Because the hole pattern is an al-
ternating sequence of 2n−r hole cells and blank cells,
H is symmetric. Valley fold H in half by folding the
bottom half of H along with any attached blank cells
upward. Because H is symmetric, hole cells of this vari-
able block will only overlap other hole cells from the
block. Because of the alternation and symmetry of the
hole pattern, the block of cells on the top-most layer
of this resulting flat folding between the first hole cell
and the last hole cell will again be symmetric. So we
can repeatedly fold the block containing the hole cells
in half until all hole cells are aligned in the second cell
location. After repeating this procedure, there will ei-
ther be no paper below the second cell, or if r = n, half
a cell of paper will extend below the second cell. In any
case, no paper from V (i, j) will extend below the third
cell location.

Next, we fold away blank cells extending above the
first cell location. After we align the hole cells, ex-
cess blank cells will exist above the second cell location.
These cells extend above the second hole location by
length 2n−r−1, equal to half the width of a 2n−r block
of blank cells. We can fold all empty cells extending
above the second cell location onto the spacer cell by
folding the excess cells in half n− r− 1 times, or not at
all if n− r − 1 < 1.

The preprocessing step requires either 1 or 2 simple
folds, the hole alignment steps require n−1 simple folds,
while collapsing empty cells requires at most n − r − 1
simple folds. Since r ∈ [1, n], this folding uses at most
2n folds. �

5.3 Cutting a Hole

Lemma 5 We can make a diamond-shaped hole cen-
tered on a hole location on the interior of a flat folding
using two Fold operations and one Cut operation.

Proof. See Figure 5. Fold in half horizontally through
the hole location and then vertically though the same
point. Then cut off the paper containing the hole loca-
tion with a cut line at 45◦. �

On a fold-and-punch machine, this lemma can be re-
placed by a direct Punch operation.



29th Canadian Conference on Computational Geometry, 2017

6 Proof of Theorem

Now we are ready to prove Theorem 1.

Proof. We produce hole pattern P ′ from P accord-
ing to a given 3SAT instance by doing the following.
Fold each CNF block of P to align literal blocks as de-
scribed in Lemma 3, which folds CNF block C(i) us-
ing 2(i − 1) + 6(m − i) Fold operations, for a total
of 4(m2 − m). Then, for each of the 3m resulting lit-
eral stacks, pleat it in half to align each variable block
V (i, j) and V (i, j) onto each other, and align hole loca-
tions as described in Lemma 4, using at most 2n Fold
operations per literal stack. Perform this step on lit-
eral stacks starting from the lowest literal stack up to
the highest. This ordering ensures that we are always
performing simple folds on a set of topmost layers. The
result is a flat folding contained within the space of three
cells, with all hole cells overlapping at the second cell
location. Then use the construction in Lemma 5 to con-
struct a hole centered on the second cell location, using
two Fold operations and one straight Cut. This fold-
ing uses O(nm+m2) Fold operations.

Now unfold to P ′ using O(nm+m2) Unfold opera-
tions. Then, folding P ′ to v(P ′) using m− 1 Fold op-
erations results in a flat folding which, by Lemma 2, has
a through-hole if and only if the original 3SAT instance
is satisfiable. Thus a single Look operation completes
the computation. �

7 Open Problems

We suggest some open problems for future study. What
is the full computation power of a fold-and-cut machine?
We can simulate t time units of a fold-and-cut machine
on a RAM in 2O(t) time. Can a polynomial-time fold-
and-cut machine simulate all of EXPTIME, or at least
PSPACE? The model seems related to parallel compu-
tation; a natural goal would be to solve problems in
EXPTIME representable by a polynomial-depth circuit.
More generally, if we allow input coordinates to be arbi-
trary real numbers, do we get R versions of complexity
classes such as NPR [BCSS98]? Is it possible to solve NP
with just Fold/Unfold operations, without a Cut?
(This may require adding a different query operation to
the model.)

Acknowledgments The authors would like to thank Alex
Cornejo, Eli Groban, Owen Macindoe, Shuhei Miyashita,
Jimmy Wong, and Damien Woods for their insightful dis-
cussions and support.

References

[ABD+04] Esther M. Arkin, Michael A. Bender, Erik D.
Demaine, Martin L. Demaine, Joseph S. B.
Mitchell, Saurabh Sethia, and Steven Skiena.

When can you fold a map? Computational Ge-
ometry: Theory and Applications, 29(1):23–46,
2004.

[ADD+] Yasuhiko Asao, Erik D. Demaine, Martin L. De-
maine, Hideaki Hosaka, Akitoshi Kawamura, To-
mohiro Tachi, and Kazune Takahashi. Folding
and punching paper. Journal of Information
Processing. To appear. Special issue of papers
from the 19th Japan Conference on Discrete and
Computational Geometry, Graphs, and Games,
September 2016.

[ADK] Hugo Akitaya, Erik D. Demaine, and Jason S.
Ku. Simple folding is really hard. Journal of
Information Processing. To appear. Special issue
of papers from the 19th Japan Conference on
Discrete and Computational Geometry, Graphs,
and Games, September 2016.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and
Steve Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

[BDEH01] Marshall Bern, Erik Demaine, David Eppstein,
and Barry Hayes. A disk-packing algorithm for
an origami magic trick. In Origami3: Proceed-
ings of the 3rd International Meeting of Origami
Science, Math, and Education, pages 17–28. A K
Peters, 2001.

[CDD+11] Jean Cardinal, Erik D. Demaine, Martin L. De-
maine, Shinji Imahori, Tsuyoshi Ito, Masashi
Kiyomi, Stefan Langerman, Ryuhei Uehara, and
Takeaki Uno. Algorithmic folding complexity.
Graphs and Combinatorics, 27(3):341–351, 2011.

[DDH+10] Erik D. Demaine, Martin L. Demaine, Andrea
Hawksley, Hiro Ito, Po-Ru Loh, Shelly Manber,
and Omari Stephens. Making polygons by sim-
ple folds and one straight cut. In Revised Pa-
pers from the China-Japan Joint Conference on
Computational Geometry, Graphs and Applica-
tions, Lecture Notes in Computer Science, pages
27–43, Dalian, China, November 2010.

[DDL98] Martin L Demaine, Erik D Demaine, and Anna
Lubiw. Folding and cutting paper. In Revised
Papers from the Japan Conference on Discrete
and Computational Geometry, volume 1763 of
Lecture Notes in Computer Science, pages 104–
118, December 1998.

[DO08] Erik D Demaine and Joseph O’Rourke. Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, August
2008.

[GJ79] Michael R. Garey and David S. Johnson. Com-
puters and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[Ueh11] Ryuhei Uehara. Stamp foldings with a given
mountain-valley assignment. In Origami5: Pro-
ceedings of the 5th International Meeting of
Origami Science, Math, and Education, pages
585–597. A K Peters/CRC Press, November
2011.


	Introduction
	Approach
	Hole Locations
	Verification
	Making Holes
	Align Literals
	Align Hole Locations
	Cutting a Hole

	Proof of Theorem
	Open Problems

