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Abstract. The minimum feature size of a planar straight-line graph is the minimum distance between a vertex and a
nonincident edge. When a polygon is partitioned into a mesh, the degradation is the ratio of original to final minimum
feature size. We show that some planar straight-line graphs cannot be triangulated with constant degradation, even
with an unbounded number of Steiner points and triangles. This result answers a 14-year-old open problem by Bern,
Dobkin, and Eppstein. For an n-vertex input, we obtain matching worst-case lower and upper bounds on degradation
of Θ(lgn). Our upper bound comes from a new meshing algorithm that uses O(n) triangles and O(n) Steiner
points. If we allow triangles to have Steiner points along their sides, a construction is presented that achieves O(1)
degradation.

Introduction
In this paper1, we study the problem of polygon triangulation, with the possible aid of Steiner
vertices. Our goal is to not introduce small distances between vertices and non-incident edges,
compared to distances already existing in the shape. To compare the input and output, we use the
minimum feature size of a planar straight-line graphG, denoted by mfs(G). This is the minimum
distance between a vertex and a nonincident edge. We are interested in decomposing a polygon
P into a planar straight-line graph (more specifically, a triangulation) G such that the minimum
feature size of G is as close as possible to that of P . We call the ratio mfs(P )

mfs(G) the degradation
of the decomposition of P into G. Note that mfs does not distinguish between the interior and
exterior of P when measuring distances.

Minimum feature size is a parameter well suited for describing the resolution needed to vi-
sually distinguish elements in a mesh. For example, it measures the maximum thickness that the
edges in a mesh can be drawn. Also, mfs measures the amount of error allowed in the placement
of vertices, so that a drawing preserves its topology. This could be useful in manufacturing, as
well as in finite element simulation.

One important issue here is the type of desired triangulation. This choice has a large effect
on the results that can be achieved. See Figure 1. The most common decomposition of a polygon
is the classic triangulation, where noncrossing chords are added between vertices of P , until the
interior of P is partitioned into triangles. If we allow Steiner points, a proper triangulation is

1The research presented in this paper was initiated at the 24th Annual Winter Workshop on Computational
Geometry at the Bellairs Research Institute of McGill University, at which the presence of Ferran Hurtado was
appreciated and is hereby acknowledged.
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such that any two edges that lie on the same interior face and are incident to a common vertex are
not collinear. A nonproper triangulation simply partitions P into triangles, with no restrictions.

FIGURE 1. Types of triangulations: classic, proper, nonproper. Steiner points
are blue.

Bern, Dobkin, and Eppstein [BDE95] studied this problem, using the notion of internal
feature size ifs(P ), which is the minimum distance inside P between a vertex and a nonincident
edge2. They proved that every polygon P (possibly with holes) has a nonproper triangulation in
which every triangle has height Ω(ifs(P )).

For a planar straight-line graph, triangulating all of its faces with triangles that have height
at least h is equivalent to guaranteeing that the triangulation itself has minimum internal feature
size at least h. Notice that the internal feature size of a triangle equals its height. Thus ifs(P ) is a
lower bound on the smallest height of a triangle in any triangulation of P , so this bound is the best
possible up to constant factors. However the method does not guarantee that the minimum feature
size of the resulting triangulation is bounded by a function of mfs(P ). Thus, partitioning both
the inside and the outside of a polygon into triangles whose height is bounded by a function of
mfs(P ) is not guaranteed either. Consequently, the first open problem the authors list is whether
their result can be generalized to planar straight-line graphs, that is, whether such graphs can be
triangulated while preserving their minimum feature size.

We answer this open problem negatively. Specifically, we provide a simple polygon G such
that every proper triangulation of G has degradation Ω(lg n), independent of the number of
Steiner points and triangles.

We match this lower bound by providing an algorithm for properly triangulating any given
planar straight-line graph G so that degradation is O(lg n). Our algorithm uses O(n) Steiner
points and hence O(n) triangles. Steiner points are necessary to obtain a degradation smaller
than a linear factor; Bern and Eppstein [BE95] showed that all classic triangulations of a regular
n-gon have a minimum feature size degradation of Ω(n). This can be extended trivially to
quadrangles or any decomposition with constant size faces.

Until now, no meshing algorithm with a constant degradation was known. Ruppert’s De-
launay mesh refinement algorithm claims such a bound [Rup93, Theorem 1],but the constant
actually depends on the minimum angle of the input graph (as well as the minimum triangle
angle guaranteed by the algorithm).

What causes the need for logarithmic degradation in proper triangulations of planar straight-
line graphs? We show that the essential issue is forbidding Steiner points along the sides of a
triangle. However, by allowing Steiner points along the sides of triangular elements (what we
call nonproper triangulation), O(1) degradation is actually possible.

2Note that “internal feature size” is called “minimum feature size” in [BDE95].
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1 Nonproper Triangulations can Preserve Minimum Feature Size

In this section we show how to construct a nonproper triangulation for any polygon P , such that
the minimum feature size degradation is Θ(1). We use Θ(n) Steiner points, and the construction
can be computed in linear time.

We provide a brief overview of our construction. There are two distinct regions of P which
will be triangulated separately. The two regions will be separated by a polygon Q interior to P
whose boundary remains at distance Θ(mfs) to that of P . The region between P and Q is called
the tube. The algorithm places all Steiner points on or interior to Q; none are placed on P .

The polygon Q is constructed to have the following properties with respect to absolute con-
stants c1, c2, . . . c3: (1) All points on Q are at most c1 away from the closest point on P , and at
least c2 away from the nearest point on P . (2) All vertices on Q have y-coordinates which are
multiples of c3 (i.e., they are on a c3 horizontal grid). (3) There are O(n) vertices (initially) on
Q. The details of how to find such a Q are omitted, but we note that the grassfire transformation
plays a vital part in the construction.

Next, an edge from each vertex of Q is added to the closest vertex on P ; now the region
between the P and Q is subdivided into triangles and quadrangles. The interior of Q is then
quadrangulated by performing a trapezoidal decomposition of the interior of the tube; this will
introduce new Steiner vertices on Q. However, since all vertices on Q are at least c3 separated,
this does not cause any issues with respect to minimum feature size.

The decomposition at this point contains triangles and quadrangles; the quadrangles need
to be triangulated. The most difficult cases are the quadrangles in the tube; these will have one
edge from P and one edge fromQ. The edge fromQmay have many Steiner vertices introduced
by the trapezoidal decomposition, separated by a distance of at least c3. The edge from P does
not have any Steiner vertices, and it can not be assumed that it is safe to put any Steiner vertices
on P because there could be another edge of P arbitrary close. For example see Figure 2 (D)
where a constant faction of the boundary of P is off-limits to the introduction of Steiner points).
The other two edges connecting P and Q do not have Steiner points. Figure 2 (A) shows how to
triangulate a rectangle subject to these restrictions while maintaining constant minimum feature
size; this construction can be slightly modified to decompose any of the needed quadrangles and
complete the construction, yielding the following theorem.

Theorem 1.1 Every polygon has a non-proper triangulation with constant minimum feature size
degradation.

2 Degradation Upper Bound for Proper Triangulations

The decomposition method is the same as for non-proper triangulations, with the exception that
the decomposition of quadrangles shown in Figure 2 (A) can not be used as it is a non-proper
triangulation. Instead the construction at the bottom of Figure 2 (C) is used; this yields O(log n)
degradation.

Theorem 2.1 Every n-vertex polygon has a proper triangulation with O(log n) minimum feature
size degradation.
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3 Lower Bounds fuck A B C D

FIGURE 2

Due to lack of space, and complexity of proofs, we only state
our main results of this section.

Let Pn be the generalized version of the n + 6 vertex
polygon illustrated in Figure 2 (D). This polygon has width
2, height n + 1, and minimum feature size of 1. Let Rn be
the rectangular region of Pn shaded in Figure 2 (D).

A τ -grid is a set of τ vertical lines. Let a τ -grid trian-
gulation of Pn be a nonproper triangulation of Pn where all
Steiner vertices are on a τ -grid.

Theorem 3.1 For every τ and n, every τ -grid (nonproper)
triangulation G of Pn has degradation Ω(min{ lgn

lg lgn ,
lgn
lg τ }).

When considering proper triangulations, our (omitted) proof
for Theorem 3.1 simplifies to a Ω( lgn

lg lgn) bound on degrada-
tion. However, we are able to improve to the following.

Theorem 3.2 For every n, every proper triangulation G of
Pn has degradation Ω(lg n).

This can be shown to extend to a bound of Ω(lgr n) for
proper r-rangulations.
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FIGURE 2. (A)-(C) are triangulations of the same rectangle
with 129 vertexes on the right edge. (A) is a non-proper tri-
angulation, with O(1) degradation. For comparison, (B) is a
simple proper fan triangulation with O(n) degradation. (C)
is a proper triangulation with O(log n) degradation. Observe
how for (A) the interiors of all the triangles are clearly visi-
ble; in (C) it is more difficult to discern the individual trian-
gles, and in (B) it is impossible. (D) is a polygon that shows
Steiner vertices cannot be placed on a significant fraction of
the boundary close to the reflex vertex.


