
Dynamic Ham-Sandwich Cuts of Convex Polygons in the Plane

Timothy Abbott∗ Erik D. Demaine∗ Martin L. Demaine∗ Daniel Kane∗ Stefan Langerman†

Jelani Nelson∗ Vincent Yeung∗

Abstract

We provide an efficient data structure for dynami-
cally maintaining a ham-sandwich cut of two non-
overlapping convex polygons in the plane. Given two
non-overlapping convex polygons P1 and P2 in the
plane, the ham-sandwich cut of P1 and P2 is a line that
simultaneously bisects the area (or perimeter or ver-
tex count) of both polygons. We provide a data struc-
ture that supports queries for the ham-sandwich cut in
O(log3 n) worst-case time and insertions and deletions
of vertices of the Pi in O(log n) worst-case time. We also
show how this data structure can be used to maintain
a partition of the plane by two lines into four regions
each containing a quarter of the total polygon area (or
perimeter or vertex count). In particular, if we use the
vertex-count measure, the intersection of these two lines
gives a point of Tukey depth n/4, which serves as an ap-
proximate Tukey median.

1 Introduction

Finding a ham-sandwich cut is a well-studied problem
with linear-time solutions in many contexts; see, e.g.,
[3, 7, 9]. In general, a ham-sandwich cut of two subsets
S1 and S2 of the plane R2 is a line that simultaneously
bisects both sets according to some measure m. If S1

and S2 are discrete sets of points, the measure m is
usually the number of points; if S1 and S2 are regions,
measure m can be area, perimeter, or the number of
vertices (if S1 and S2 are polygonal).

A related problem, introduced by Megiddo [8], is that
of finding a two-line partition. A two-line partition of
a subset S of the plane is a pair of lines that partition
the plane into four regions (“quadrants”) each contain-
ing a quarter of the total measure, 1

4m(S). As detailed
in Section 2, the (static) problems of finding a ham-
sandwich cut or two-line partition for given sets S1 and
S2 are well studied, with linear-time solutions for most
variations. The connection between this problem and
ham-sandwich cuts is that each line in the partition is
a ham-sandwich cut with respect to the 2-coloring in-
duced by the other line in the partition.

∗MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA, {tabbott,edemaine,
mdemaine,dankane,minilek,vshyeung}@mit.edu.

†Chercheur qualifié du FNRS, Université Libre de Bruxelles,
Département d’informatique, ULB CP212, Belgium. Stefan.
Langerman@ulb.ac.be.

A two-line partition also serves as an approximate
Tukey median or centerpoint; see, e.g., [5]. A Tukey
median of a subset S of the plane is a point of maxi-
mum Tukey depth. The Tukey depth of a point is the
minimum measure of the intersection of S with a half-
plane whose bounding line passes through the point.
The depth of the Tukey median is always between n/3
and n/2; any point of depth at least n/3 is called a
centerpoint. The intersection point of the two-line par-
tition provides a point of Tukey depth n/4, which ap-
proximates the maximum possible depth within a factor
of 2 and approximates the centerpoint guarantee within
a factor of 4

3 .
While the problems of finding ham-sandwich cuts,

two-line partitions, and Tukey medians and centerpoints
are all well-understood when the subsets of the plane
are given and static, nothing nontrivial is known for the
problems of maintaining these structures for dynami-
cally changing subsets of the plane. We initiate this
study by solving the dynamic versions of ham-sandwich
cuts, two-line partitions, and hence approximate Tukey
medians, in the case of two disjoint convex polygons P1

and P2. (For two-line partitioning and Tukey medians,
the subset S is the union P1 ∪ P2.) Our main result is
a data structure that supports insertion and deletion of
a vertex in either P1 or P2 in O(log n) worst-case time,
supports query for a ham-sandwich cut, a two-line par-
tition, or an approximate Tukey median in O(log3 n)
worst-case time, where n denotes the total number of
vertices among P1 and P2. (For the two-line partition
we must also solve a polynomial of constant degree > 4.)

Data structures for dynamic convex polygons have
not been considered before to our knowledge. We con-
sider the following formulation of updates. The data
structure must maintain two planar point sets subject
to insertions and deletions of points in either of the sets,
so long as these updates preserve the invariants that the
points in each set lie in convex position and that the two
convex hulls P1 and P2 are disjoint.

2 Background

The existence of a ham-sandwich cut is a well-known
result; see, e.g., [3]. We give a short proof in the context
of two disjoint convex polygons P1 and P2 because our
data structure uses the same principle. Consider any
line ` separating P1 and P2 into separate half-planes.
Without loss of generality, assume that ` is the y-axis

1

{tabbott,edemaine,mdemaine,dankane,minilek,vshyeung}@mit.edu
{tabbott,edemaine,mdemaine,dankane,minilek,vshyeung}@mit.edu
Stefan.Langerman@ulb.ac.be
Stefan.Langerman@ulb.ac.be


and that P1 is on the left. For any real number x, let
fi(x) be the slope of the line that passes through the
point (0, x) on ` and bisects the measure of Pi. Define
f(x) = f1(x) − f2(x). Because f is continuous, and
because limx→∞ f(x) = +∞ and limx→−∞ f(x) = −∞,
it follows by the intermediate value theorem that there is
an x such that f(x) = 0, which implies that the bisectors
of P1 and P2 through x are in fact the same line, which
provides a ham-sandwich cut.

Lo et al. [7] give an optimal O(n)-time algorithm for
finding a ham-sandwich cut of two static point sets of to-
tal size n. Stojmenović [9] gives an O(n)-time algorithm
for finding a ham-sandwich cut that bisects the area of
two static convex polygons with n vertices total. How-
ever, his solution does not support fast updates upon
insertion or deletion of vertices. To our knowledge, our
solution for ham-sandwich cuts is the first that handles
dynamic convex polygons in o(n) time per update.

Using the existence of ham-sandwich cuts, it is easy
to prove the existence of two-line partitions [8]. Con-
sider any line `1 that bisects the measure of S = P1∪P2.
Now consider partitioning the measure into the portion
S1 to the left of `1 and the portion S2 to the right
of `1. A ham-sandwich cut of (S1, S2) gives us a line
`2 that simultaneously bisects the measure of S1 and
S2, each of which bisected the entire measure S, and
thus (`1, `2) is a two-line partition. Based on this proof,
Megiddo [8] gives an O(n)-time algorithm for the two-
line partition problem for two static sets of points in the
plane. (This result preceded the O(n)-time algorithm
for general ham-sandwich cuts.)

Unfortunately, our data structure for two-line par-
titioning cannot proceed so simply. The partition of
S = P1 ∪ P2 into the polygons P1 and P2 may not bi-
sect the measure m(S), so this partition may not induce
a suitable line `1. Thus such an approach would need
a more general ham-sandwich data structure than the
case of two convex polygons. Nonetheless we show that,
if we chose `1 to be a ham-sandwich cut of (P1, P2),
then it is possible to find a suitable line `2 using simi-
lar techniques to ham-sandwich cutting, without more
than constant-factor overhead.

3 The Data Structure

Our data structure represents each convex polygon Pi

by two augmented balanced binary search trees, one for
the upper chain and one for the lower chain, each or-
dering the edges in counterclockwise order. The upper
and lower chains are defined by their common endpoints
of the leftmost and rightmost vertices. With each edge
(v1, v2) of either Pi, we store three measures: (1) the
signed area of the trapezoid defined by v1, v2, and the
projection of v1 and v2 down onto the x-axis; (2) the
length of (v1, v2); and (3) the number 1. Each node x

of a binary search tree maintains three subtree sums,
one for each measure. From this information we can
compute the measure of any subchain in O(log n) time.

First we discuss how to maintain this structure under
insertion and deletion in O(log n) time per operation.
Both insertion and deletion require updating the mea-
sures of at most two edges, and the subtree sums can
be propagated in O(log n) time. For vertex deletion,
we just delete the vertex from the tree containing it
in O(log n) time. During rebalancing, we can maintain
subtree sums by adding O(1) time to the cost of a ro-
tation; thus this information can be maintained with a
constant-factor overhead.

Consider adding a new vertex v to a polygon Pi, such
that the resulting set of vertices of Pi are still in convex
position. By a sidedness test between v and the line
connecting the two endpoints of the two chains, we can
determine whether v should be added to the upper or
lower chain. By symmetry, assume it is the upper chain.
We want to find the unique edge of the upper chain
whose line extension is below v; the rest are above v if
v is to be in convex position with the rest. Now pick
the median edge e, and let ` be its line extension. If
v is above `, we add v in the upper chain between e’s
endpoints and are done. Otherwise, v is below `. Now
` partitions the exterior of the upper chain into two
pieces, the left and the right. Because v is below `, we
can test whether v is in the left or right piece by test-
ing sidedness against a vertical line through any point
along e. Then we can recurse in the appropriate side,
and find the proper edge in O(log n) time. Therefore,
insertion can be done in O(log n) time.

Next we show how to perform some basic queries us-
ing this data structure, which will be necessary for the
queries of interest.

Proposition 1 Given a line `, we can find which edges
of Pi it intersects in O(log n) time.

Proof. We describe how to find the edge of the upper
chain of Pi that ` intersects, as the problem of finding
the edge in the lower chain is symmetric.

First we find two vertices of the upper chain on op-
posite sides of `. If the two endpoints of the chain are
on opposite sides, we use those. Otherwise, for each
edge of the upper chain, consider the absolute differ-
ence between its slope and `’s slope. Over the edges in
counterclockwise order, this function is unimodal with
a unique local minimum (corresponding roughly to the
tangent of Pi parallel to `). We can therefore find this
minimum in O(log n) time via Fibonacci search [6]. If
any vertex of Pi is on the opposite side of ` compared
to the two endpoints of the chain, then one of the end-
points of this edge must be. Thus we obtain two vertices
v and w of the chain on opposite sides of `, if two such
vertices exist. (Otherwise, ` does not intersect Pi at all,
and we are done.)

2



Now we can binary search to find an edge that strad-
dles `, by considering the median vertex m between
v and w and recursing on either (m, v) or (m,w),
whichever pair straddles `, until we find that (v, w) is a
single edge. Once we have found such a straddling edge
(v, w), we output it and recurse on the two subchains
resulting from removing that edge. If there is a second
edge that intersects `, one of these recursions will find
it. Only one recursion of this type is necessary, so the
total running time is O(log n). �

Proposition 2 Given a line `, we can find the measure
of the portion of Pi above ` in O(log n) time.

Proof. By the previous proposition, we can find the
two edges e1, e2 that ` intersects in O(log n) time, as
well as the points of intersection. We then compute the
sum of the measures of the interval of edges from e1

and e2. For perimeter and vertex count, we are done.
For area, we follow the ideas of [2]. We subtract the area
of the trapezoid defined by the two points of intersection
between ` and Pi and their two projections onto the x-
axis. We also subtract the area under e1 and e2 below `.
The result is the desired area of Pi above `. �

Proposition 3 Given a point p, we can find the bisec-
tor of Pi through p in O(log2 n) time.

Proof. Observe that, as a function of the slope of lines
` through p, the measure of Pi to the left of ` is mono-
tonic. Thus, we can binary search for the right edge of
Pi intersected by the bisector containing p. We do this
by binary searching through the vertices of Pi, where
for each vertex v we consider the measure to the left of
the directed line vp to tell us which way to go in the
binary search. We will eventually be down to a range of
two adjacent vertices, which must be the desired edge
intersected by the bisector. Similarly, we can find the
left edge intersected by the bisector through p. Now we
can find the actual bisecting line in constant time by
solving a quartic polynomial. Each of the two binary
searches use O(log n) iterations. During each iteration,
we compute the measure of Pi cut by a line, which takes
O(log n) time by the previous proposition. The total
running time is therefore O(log2 n). �

Now we turn to the main queries of interest: ham-
sandwich cuts and two-line partitions.

3.1 Ham-Sandwich Cut

Theorem 4 There is a data structure that maintains
two convex polygons with n vertices total subject to in-
sertion and deletion of vertices (subject to the vertices
remaining in convex position) in O(log n) worst-case
time and queries for a ham-sandwich cut in O(log3 n)
worst-case time.

O

H

R2Q1

R1

Q2

S

Figure 1: An example of a two-line partition.

We first find a line S that separates the plane such
that P1 is completely on one side and P2 on the other.
We can do this in O(log n) time by a method described
in [4]. We conceptually rotate the plane so that S is
vertical and so that P1 is to its left. (This notion of
“vertical”, used for the rest of the section, is distinct
from the fixed notion of vertical used to define the upper
and lower chains.)

Now, we binary search for the right edge of P1 in-
tersected by the ham-sandwich cut. Consider all the
lines that bisect the measure of P1 and intersect the
edge (v1, v2). Their intersections with S form a contigu-
ous segment, starting with the intersection from the P1

bisector that passes through v1 up to the intersection
from the bisector that passes through v2. So, for an
edge (v1, v2), we find the bisectors of P1 through v1, v2,
and let p1 and p2 be the intersections of those bisectors
with S. For each pi, we then find the bisector of P2

through pi. We can then tell which way to go in our
binary search by comparing the slopes of the bisectors
of P1 with the slopes of the bisectors of P2.

Once we have found the right edge of P1 intersected
by the ham-sandwich cut, we can repeat a similar proce-
dure to find the left edge of P1 then the two edges of P2.
Stojmenović [9] shows that, once we have found the four
edges intersected by the ham-sandwich cut, the actual
ham-sandwich cut can be found in O(1) time by solv-
ing for the roots of a quartic polynomial. Finding each
edge requires a binary search, each iteration of which
performs two bisector queries. By Proposition 3, we
can find the ham-sandwich cut in O(log3 n) time.

3.2 Two-Line Partition

Theorem 5 The data structure of Theorem 4 can also
be used to support two-line partition queries in O(log3 n)
worst-case time.

We now show how to find a second line that, combined
with the ham-sandwich cut, forms a two-line partition.

3



Let H be the ham-sandwich cut that we have just shown
how to find. We can now view our plane as having four
convex polygons, two on each side of H. Call them
Q1, Q2 and R1, R2, where the Qi are above H, and Q1

(resp. R1) is closer to −∞ along H than Q2 (resp. R2).
So, Pi = Qi ∪ Ri. We can view H as being similar
to S when we were looking for a ham-sandwich cut, in
that it separates two regions whose measures we would
like to simultaneously bisect. Figure 1 shows a two-line
partition with the polygons and lines labeled as above.

There are three cases for the second line, which we
call O, that completes the two-line partition: (1) it in-
tersects neither Q1 nor Q2, (2) it intersects Q1, and
(3) it intersects Q2 but not Q2.

For case 1 to occur, O must also intersect neither R1

nor R2 in order for the measures in all quadrants to
be equal. Symbolically, m(R1) = m(R2) = m(Q1) =
m(Q2), but recall that m(P1) = m(Q1) + m(R1) and
m(P2) = m(Q2) + m(R2). So, this case occurs if and
only if the measures of P1 and P2 are equal, which we
can check for and return the second line to be S if so.

Now we check whether case 2 holds. The algorithm
is similar to the algorithm from Section 3.1 for find-
ing H. We assume that O does intersect Q1, and we
binary search over the edges of Q1 to find the edge that
O passes through. For each edge (a, b), we find the bi-
sector of the half-plane containing the Qi that passes
through a. We do the same for b. We cannot use the
approach in Proposition 3 as stated since we now have
two polygons, but the idea is the same. The only dif-
ference is that now at each stage of the binary search,
we also have to search for the edge intersected on Q2.
This only gives an additive O(log n) in the time, so we
can still find a bisector in O(log2 n). We note that the
slope of bisectors is monotonic as a function of where
the bisector intersects H, and the slope is monotonic in
the other direction for bisectors of the half-plane con-
taining the Ri. So, after finding the bisectors passing
through a and b, we can find bisectors of the half-plane
containing the Ri and compare slopes to tell us which
way to go in the binary search.

If we do eventually find an edge that works, we are
indeed in case 2. We then check whether O intersects
the edge of Q1 on H. If so, we know that O intersects R1

and does not intersect Q2. We can then binary search
over edges of R2 to see if O intersects R2. If O does not
intersect the edge of Q1 on H, then O must intersect
Q1 twice, not intersect R1, and intersect P2 (the original
polygon that Q2 and R2 came from) exactly twice. We
can find these intersections again using binary search.
Once we know the set of edges of our polygons that O
intersects, we can find the slope in time linear in the
number of desired output bits, by computing a root of
a constant-degree polynomial within the range of slopes
that intersect that set of edges.

If we failed to be in cases 1 and 2, then we must be
in case 3. This case is identical to case 2 with Q1 and
Q2 swapped, so we may solve it exactly the same way.

4 Conclusion

These results can be seen as the first dynamic data
structures for maintaining geometric robust statistics.
It would be interesting to continue this line of pursuit,
and find data structures for maintaining geometric ro-
bust statistics, and ham-sandwich cuts, under more in-
teresting distributions than two disjoint convex poly-
gons. The most natural distribution to consider is any
set of points, which seems a more difficult problem. An-
other direction for extension is to consider convex poly-
hedra in higher (fixed) dimension. We expect to be
able to generalize our structure for ham-sandwich cuts
to handle two sets separated by a line, each of which is
a union of a constant number of convex polygons, using
the ideas of our two-line partition structure.

Other interesting directions for future work include
dynamically maintaining a centerpoint (point of Tukey
depth at least n/3) or even a Tukey median (point
of maximum Tukey depth). The best results for the
static versions of these problems are O(n) time [5] and
O(n log n) expected time [1], respectively.

Acknowledgments. This work began at an open-
problem session organized as part of the MIT Advanced
Data Structures class (6.897) in Spring 2005. The au-
thors thank the other participants of that session—
Brian Dean, Nick Harvey, Pramook Khungurn, Michael
Lieberman, Mihai Pǎtraşcu, and Yoyo Zhou—for help-
ful discussions and a stimulating environment.

References

[1] T. M. Chan. An optimal randomized algorithm for max-
imum Tukey depth. SODA 2004: 430-436.

[2] J. Czyzowicz, F. Contreras-Alcalá, and J. Urrutia. On
measuring areas of polygons. CCCG. 1998.

[3] Herbert Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag. 1987.

[4] H. Edelsbrunner. Computing the extreme distances be-
tween two convex polygons. J. Algorithms 6(2): 213-
224. 1985.

[5] S. Jadhav and A. Mukhopadhyay. Computing a center-
point of a finite planar set of points in linear time. Dis-
crete and Computational Geometry 12: 291-312. 1994.

[6] J. Kiefer. Sequential minimax search for a maximum.
Proc. Amer. Math. Soc., 4:502–506, 1953.

[7] Chi-Yuan Lo, Jǐŕı Matoušek, and William L. Steiger.
Algorithms for ham-sandwich cuts. Discrete and Com-
putational Geometry 11: 433-452. 1994.

[8] Nimrod Megiddo. Partitioning with two lines in the
plane. J. Algorithms 6(3): 430-433. 1985.

[9] Ivan Stojmenović. Bisections and ham-sandwich cuts
of convex polygons and polyhedra. Inf. Process. Lett.
38(1): 15-21. 1991.

4


	1 Introduction
	2 Background
	3 The Data Structure
	3.1 Ham-Sandwich Cut
	3.2 Two-Line Partition

	4 Conclusion

