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Abstract

In this paper we consider deflations (inverse pocket
flips) of quadrilaterals and pentagons. We charac-
terize infinitely deflatable quadrilaterals by proving
necessity of previously obtained sufficient conditions.
Then we show that every pentagon can be deflated
after finitely many deflations, and that any infinite
deflation sequence of a pentagon results from deflat-
ing an induced quadrilateral on four of the vertices.

1 Introduction

A deflation of a simple planar polygon is the opera-
tion of reflecting a subchain of the polygon through
the line connecting its endpoints such that (1) the
line intersects the polygon only at those two polygon
vertices, (2) the resulting polygon is simple (does not
self-intersect), and (3) the reflected subchain lies in-
side the hull of the resulting polygon. A polygon is
deflated if it does not admit any deflations, i.e., every
pair of polygon vertices either defines a line intersect-
ing the polygon elsewhere or results in a nonsimple
polygon after reflection.

Deflation is the inverse operation of pocket flipping.
Given a nonconvex simple planar polygon, a pocket

is a maximal connected region exterior to the poly-
gon and interior to its convex hull. Such a pocket is
bounded by one edge of the convex hull of the polygon,
called the pocket lid, and a subchain of the polygon,
called the pocket subchain. A pocket flip (or simply
flip) is the operation of reflecting the pocket subchain
through the line extending the pocket lid. The re-
sult is a new, simple polygon of larger area with the
same edge lengths as the original polygon. A convex
polygon has no pocket and hence does not admit a
flip.

In 1935, Erdős conjectured that every nonconvex
polygon convexifies after a finite number of flips [3].
Four years later, Nagy [1] claimed a proof of Erdős’s
conjecture. Recently, Demaine et al. [2] uncovered
a flaw in Nagy’s argument, as well as other claimed
proofs, but fortunately correct proofs remain.

In the same spirit of finite flips, Wegner conjectured
in 1993 that any polygon becomes deflated after a fi-
nite number of deflations [6]. Eight years later, Fevens
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et al. [4] disproved Wegner’s conjecture by demon-
strating a family of quadrilaterals that admit an infi-
nite number of deflations. They left an open problem
of characterizing which polygons deflate infinitely.

In this paper, we show that the family of quadri-
laterals described in [4] are the only polygons with
four sides that admit infinitely many deflations, thus
characterizing infinitely deflatable quadrilaterals. We
also show that any such quadrilateral flattens in the
limit. We use this characterization of infinitely de-
flating quadrilaterals to understand deflations of pen-
tagons. Specifically, we show that every pentagon ad-
mitting an infinite number of deflations induces an in-
finitely deflatable quadrilateral on four of its vertices.
Then we show our main result: every pentagon can be
deflated after finitely many (well-chosen) deflations.

2 Definitions and Notations

Let P = 〈v0, v1, . . . , vn−1〉 be a polygon together
with a clockwise ordering of its vertices. Let P k =
〈vk

0 , vk
1 , . . . , vk

n−1〉 denote the polygon after k arbitrary
deflations, and P ∗ denote the limit of P k, when it
exists, having vertices v∗

i . Thus, the initial polygon
P = P 0. The turn angle of a vertex vi is the signed an-
gle θ ∈ (−180◦, 180◦] between the two vectors vi−vi−1

and vi − vi+1. A vertex of a polygon is flat if the an-
gle between its incident edges is 180◦, i.e., forming a
turn angle of 0◦. A flat polygon is a polygon with all
its vertices collinear. A hairpin vertex vi is a vertex
whose incident edges overlap each other, i.e., forming
a turn angle of 180◦. A polygon vertex is sharpened

when its absolute turn angle decreases.

3 Deflation in General

In this section, we prove general properties about de-
flation in arbitrary simple polygons. Our first few
lemmata are fairly straightforward, while the last
lemma is quite intricate and central to our later argu-
ments.

Lemma 1 Deflation only sharpens angles.

This result follows from an analogous result for
pocket flips, which only flatten angles (see, e.g., [5]).

Corollary 2 Any n-gon with no flat vertices will con-
tinue to have no flat vertices after deflation, even in
an accumulation point.
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Lemma 3 In any infinite deflation sequence
P 0, P 1, P 2, . . . , the absolute turn angle |τi| at any
vertex vi has a (unique) limit |τ∗

i |.

Corollary 4 In any infinite deflation sequence
P 0, P 1, P 2, . . . , v∗

i is a hairpin vertex in some accu-
mulation point P ∗ if and only if v∗

i is a hairpin vertex
in all accumulation points P ∗.

Lemma 5 Any n-gon with n odd and no flat vertices
cannot flatten in an accumulation point of an infinite
deflation sequence.

Lemma 6 For any infinite deflation sequence
P 0, P 1, P 2, . . . , there is a subchain vi, vi+1, . . . , vj

(where j − i ≥ 2) that is the pocket chain of infinitely
many deflations.

We conclude this section with a challenging lemma
showing that infinitely deflating pockets flatten:

Lemma 7 Assume P = P 0 has no flat vertices. If P ∗

is an accumulation point of the infinite deflation se-
quence P 0, P 1, P 2, . . . , and subchain vi, vi+1, . . . , vj

(where j − i ≥ 2) is the pocket chain of infinitely
many deflations, then v∗

i , v∗
i+1, . . . , v

∗
j are collinear

and v∗
i+1, . . . , v

∗
j−1 are hairpin vertices. Furthermore,

if v∗
i+1, . . . , v

∗
j−1 extends beyond v∗

j , then v∗
j is a hair-

pin vertex; and if v∗
i+1, . . . , v

∗
j−1 extends beyond v∗

i ,
then v∗

i is a hairpin vertex. In particular, if j − i = 2,
then either v∗

i or v∗
j is a hairpin vertex.

Proof. Because P 0 ⊇ P 1 ⊇ P 2 ⊇ · · · , we
have hull(P 0) ⊇ hull(P 1) ⊇ hull(P 2) ⊇
· · · , and in particular area(hull(P 0)) ≥
area(hull(P 1)) ≥ area(hull(P 2)) ≥ · · · ≥ 0.
Thus,

∑∞
t=1

[area(hull(P t)) − area(hull(P t−1))] ≤
area(hull(P 0)), so area(hull(P t)) −
area(hull(P t−1)) → 0 as t → ∞. Hence, for
any ε > 0, there is a time Tε such that, for all t ≥ Tε,
area(hull(P t)) − area(hull(P t−1)) ≤ ε. As a conse-
quence, for all t ≥ Tε, hull(P t−1) ⊆ hull(P t) ⊕ Dε/ℓ

where ⊕ denotes Minkowski sum, Dx denotes a disk
of radius x, and ℓ is the length of the longest edge
in P , which is a lower bound on the perimeter of
hull(P t).

Let t1, t2, . . . denote the infinite subsequence of de-
flations that use vi, vi+1, . . . , vj as the pocket sub-
chain, where P tr is the polygon immediately after the
rth deflation of the pocket chain vi, vi+1, . . . , vj . Con-
sider any vertex vk with i < k < j. If tr ≥ Tε, then
vtr−1

k ∈ hull(P tr ) ⊕ Dε/ℓ. Also, vtr−1

k is in the half-
plane Hr exterior to the line of support of P tr through
vtr

i and vtr

j . Now, the region (hull(P tr ) ⊕ Dε/ℓ) ∩ Hr

converges to a subset of the line ℓtr

i,j through vtr

i and

vtr

j as ε → 0 while keeping tr ≥ Tε. Thus, for any ac-
cumulation point P ∗, v∗

k is collinear with v∗
i and v∗

j ,

for all i < k < j. In other words, v∗
i+1, . . . , v

∗
j−1 lie

on the line ℓ∗i,j through v∗
i and v∗

j . By Corollary 2,
v∗

i+1, . . . , v
∗
j−1 are not flat, so they must be hairpins.

By Lemma 3, the absolute turn angle |τj | of ver-
tex vj has a limit |τ∗

j |. If |τ∗
j | > 0 (i.e., v∗

j is not
a hairpin in all limit points P ∗), then by Lemma 1,
|τ t

j | ≥ |τ∗
j | > 0. For sufficiently large t, vt

j−1 ap-
proaches the line ℓt

i,j . To form the absolute turn angle
|τ t

j | ≥ |τ∗
j | > 0 at vj , vt

j+1 must eventually be bounded
away from the line ℓt

i,j : after some time T , the mini-
mum of the two angles between vt

jv
t
j+1 and ℓt

i,j must
be bounded below by some α > 0. Now suppose that
some vtr−1

k were to extend beyond vtr−1

j in the pro-

jection onto the line ℓtr−1

i,j for some tr − 1 > T . As
illustrated in Figure 1, for the deflation of the chain
vtr−1

i , vtr−1

i+1
, . . . , vtr−1

j to not cause the next polygon

P tr to self-intersect, the minimum of the two angles
between vtr−1

j vtr−1

k and ℓtr−1

i,j must also be at least α.
See Figure 1.

But this is impossible for sufficiently large t, be-
cause vt

k accumulates on the line ℓt
i,j . Hence, in fact,

vt
k must not extend beyond vt

j in the ℓt
i,j projection

for sufficiently large t. In other words, when v∗
j is

not a hairpin, each v∗
k must not extend beyond v∗

j on
the line ℓ∗i,j . A symmetric argument handles the case
when v∗

i is not a hairpin.
Finally, suppose that j−i = 2. In this case, because

v∗
i+1 = v∗

j−1 is a hairpin, it must extend beyond one
of its neighbors, v∗

i or v∗
j . By the argument above, in

the first case, v∗
i must be a hairpin, and in the second

case, v∗
j must be a hairpin. Thus, as desired, either

v∗
i or v∗

j must be a hairpin. �

4 Deflating Quadrilaterals

Lemma 8 Any accumulation point of an infinite de-
flation sequence of a quadrilateral is flat and has no
flat vertices.

Proof. First we argue that all quadrilaterals
P 1, P 2, . . . (excluding the initial quadrilateral P 0)
have no flat vertices. Because deflations are the in-
verse of pocket flips, and pocket flips do not exist for
convex polygons, deflation always results in a noncon-
vex polygon. Thus all quadrilaterals P t with t > 0
must be nonconvex. Hence no P t with t > 0 can have
a flat vertex, because then it would lie along an edge
of the triangle of the other three vertices, making the
quadrilateral convex. By Corollary 2, there are also
no flat vertices in any accumulation point P ∗.

By Lemma 6, there is a subchain vi, vi+1, . . . , vj ,
where j − i ≥ 2, that is the pocket chain of infinitely
many deflations. In fact, j − i must equal 2, because
reflecting a longer (4-vertex) pocket chain would not
change the polygon. Applying Lemma 7 to P 1, P 2, . . .
(with no flat vertices), for any accumulation point P ∗,
v∗

i+1 is a hairpin and either v∗
i or v∗

j = v∗
i+2 is a
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vt
j+1

vt
i

α ℓ
t
i,j

< αvt
j

vt
k

vt+1
k

(a) The angle between vt
k
vt

j and ℓt
i,j is less than α, hence

in the next deflation step the chain vt
i . . . vt

j will intersect
the polygon.

> α

α ℓ
t
i,j

vt
j+1

vt
j

vt
k

vt+1
k

vt
i

(b) The angle between vt
k
vt

j and ℓt
i,j is greater than α, so

the polygon will not self-intersect in the next deflation
step.

Figure 1: Because vt
j is not a hairpin, the minimum angle α between vt

jv
t
j+1 and ℓt

i,j is strictly positive. If any
vertex vt

k of the chain vt
i , v

t
i+1, . . . , v

t
j extends beyond vt

j , then the minimum angle between vt
kvt

j and ℓt
i,j must

be at least α for the polygon P t+1 not to self-intersect in the next deflation step. The dotted curve represents
the rest of the polygon chain and the shaded area is the interior of the polygon below line ℓt

i,j .

hairpin. Hairpin v∗
i+1 implies that v∗

i , v∗
i+1, v∗

i+2 are
collinear, while hairpin v∗

i or v∗
i+2 implies that the

remaining vertex v∗
i+3 = v∗

i−1 lie on that same line.
Therefore, any accumulation point P ∗ is flat. �

Combining the flattening property of Lemma 8 with
the previous necessary conditions of Fevens et al. [4],
we obtain a complete characterization of infinitely de-
flating quadrilaterals:

Theorem 9 A quadrilateral with side lengths
ℓ1, ℓ2, ℓ3, ℓ4 is infinitely deflatable if and only if

1. opposite edges sum equally, i.e., ℓ1 +ℓ3 = ℓ2 +ℓ4;
and

2. adjacent edges differ, i.e., ℓ1 6= ℓ2 6= ℓ3 6= ℓ4 6= ℓ1.

Furthermore, every such infinitely deflatable quadri-
lateral deflates infinitely independent of the choice of
deflation sequence.

Proof. Fevens et al. [4] proved that every quadrilat-
eral satisfying the two conditions on its edge lengths
are infinitely deflatable, no matter which deflation se-
quence we make. Thus the two conditions are suffi-
cient for infinite deflation.

To see that the first condition is necessary, we use
Lemma 8. Because deflation preserves edge lengths,
so do accumulation points of an infinite deflation se-
quence, so the flat limit configuration from Lemma 8
is a flat configuration of the edge lengths ℓ1, ℓ2, ℓ3, ℓ4.
By a suitable rotation, we may arrange that the flat
configuration lies along the x axis. By Lemma 8, no
vertex is flat, so every vertex must be a hairpin. Thus,
during a traversal of the polygon boundary, the edges
alternate between going left ℓi and going right ℓi. At
the end of the traversal, we must end up where we
started. Therefore, ±(ℓ1 − ℓ2 + ℓ3 − ℓ4) = 0, i.e.,
ℓ1 + ℓ3 = ℓ2 + ℓ4.

To see that the second condition is necessary, sup-
pose for contradiction that ℓ1 = ℓ2 (the other con-
trary cases are symmetric). By the first condition,

ℓ1 + ℓ3 = ℓ1 + ℓ4, so ℓ3 = ℓ4. Thus, the polygon is a
kite, having two pairs of adjacent equal sides. (Also,
all four sides might be equal.) Every kite has a chord
that is a line of reflectional symmetry. No kite can
deflate along this line, because such a deflation would
cause edges to overlap with their reflections. If a kite
is convex, it may deflate along its other chord, but
then it becomes nonconvex, so it can be deflated only
along its line of reflectional symmetry. Therefore, a
kite can be deflated at most once, so any infinitely
deflatable quadrilateral must have ℓ1 6= ℓ2 and sym-
metrically ℓ1 6= ℓ2 6= ℓ3 6= ℓ4 6= ℓ1. �

5 Deflating Pentagons

Theorem 10 There is a pentagon with a flat vertex
that deflates infinitely for all deflation sequences, ex-
actly like the quadrilateral on the nonflat vertices.

Proof. See Figure 2. We start with an infinitely
deflating quadrilateral 〈v0, v1, v2, v3, v4〉 according to
Theorem 9, and add a flat vertex v5 along the edge
v4v0. As long as we never deflate along a line passing
through the flat vertex v4, the deflations act exactly
like the quadrilateral, and thus continue infinitely
no matter which deflation sequence we choose. To
achieve this property, we set the length of segment
v3v0 to 1, with v4 at the midpoint; we set the lengths
of edges v0v1 and v2v3 to 2/3; and we set the length
of edge v1v2 to 1/3. Then we deflate the quadrilat-
eral until the vertices are close to being hairpins that
v4 cannot see the nonadjacent convex vertex and the
line through v4 and the reflex vertex intersects the
pentagon at another point. Thus no line of deflation
passes through v4, so we maintain infinite deflation as
in the induced quadrilateral. �

Finally we show that any infinitely deflating pen-
tagon induces an infinitely deflating quadrilateral.

Theorem 11 Every pentagon with no flat vertices is
finitely deflatable.
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Figure 2: An infinitely deflatable pentagon that induces an infinitely deflatable quadrilateral (left) and its
configuration after the first deflation (right).

Proof. Let P be a pentagon with no flat vertices,
and assume for the sake of contradiction that P de-
flates infinitely. Consider any accumulation point
P ∗ of an infinite deflation sequence P 0, P 1, P 2, . . . .
By Lemma 6, there is an infinitely deflating pocket
chain, say v0, v1, . . . , vj , where j ≥ 2. By Lemma 7,
v∗
1 , . . . , v∗j−1 are hairpin vertices. Because the pen-

tagon has only five vertices, j ≤ 4. In fact, j ≤ 3:
if j = 4, this pocket chain would encompass all
five vertices, making P ∗ collinear, which contradicts
Lemma 5. If j = 3, then v∗

1 and v∗
2 are hairpins. If

j = 2, then by Lemma 7, either v∗
0 or v∗

2 must be a
hairpin; suppose by symmetry that it is v∗

2 . Thus,
in this case, again v∗

1 and v∗
2 are hairpins. Hence, in

all cases, v∗
1 and v∗

2 are hairpins, so v∗
0 , v∗

1 , v∗
2 , v∗

3 are
collinear, while by Lemma 5, v∗

4 must be off this line.

By Lemma 7, an infinitely flipping pocket chain re-
quires at least one hairpin vertex. Thus, the only
possible infinitely flipping pocket chains are v0, v1, v2;
v1, v2, v3; and v0, v1, v2, v3. Let T denote the time af-
ter which only these chains flip. Thus, after time T ,
v0, v3, v4 stop moving, so in particular, v4’s angle and
the length of the edge v0v3 take on their final val-
ues. Therefore, after time T , the vertices v0, v1, v2, v3

induce a quadrilateral that deflates infinitely.

Because v∗
0 , v∗

1 , v∗
2 , v∗

3 are collinear and v∗
4 is off this

line, neither v∗
0 nor v∗

3 can be hairpins. By Lemma 7,
v∗
1 and v∗

2 must lie along the segment v∗
0v∗

3 . By Theo-
rem 9, no two adjacent edges of the quadrilateral have
the same length, so in fact v∗

1 and v∗
2 must be strictly

interior to the segment v∗
0v∗

3 . For sufficiently large t,
vt
0, v

t
1, v

t
2, v

t
3 are arbitrarily close to collinear, and vt

1

and vt
2 project strictly interior to the line segment

vt
0v

t
3. As a consequence, for sufficiently large t, we can

deflate the chain vt
0, v

t
1, v

t
2, v

t
3 along the line through

vt
0 and vt

3 into the triangle vt
0v

t
3v

t
4. But then the con-

vex hull of P t+1 is vt+1

0 vt+1

3 vt+1

4 , which is fixed, so
no further deflations are possible, resulting in a finite
deflation sequence. �

6 Larger Polygons and Open Problems

It is easy to construct n-gons with n ≥ 6 that de-
flate infinitely, no matter which deflation sequence
we choose. See Figure 3 for the idea of the con-
struction. We can add any number of spikes to
obtain n-gons with n ≥ 6 and even. For n odd,
we can shave off the tip of one of the spikes.

Figure 3: An in-
finitely deflating oc-
tagon constructed by
adding long spikes to
an infinitely deflating
quadrilateral.

Thus, n = 5 is the only
value for which every n-
gon with no flat vertices
can be finitely deflated.

None of the infinitely
deflating polygons of Fig-
ure 3 are particularly sat-
isfying because their ac-
cumulation points are not
flat. Are there any n-gons,
n > 4, that have no flat
vertices and always deflate
infinitely to flat accumula-
tion points? In an unpub-
lished manuscript (2004),
Fevens et al. show a fam-
ily of infinitely deflating
hexagons with no flat ver-
tices that flatten in the limit.

Does every infinite deflation sequence have a
(unique) limit? Our proofs would likely simplify if
we knew there was only one accumulation point.

Is there an efficient algorithm to determine whether
a given polygon P has an infinite deflation sequence?
What about detecting whether all deflation sequences
are infinite? Even given a (succinctly encoded) infi-
nite sequence of deflations, can we efficiently deter-
mine whether the sequence is valid, i.e., whether it
avoids self-intersection?
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