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Abstract: In this paper we review masterpieces of curved crease folding, the deployed 
design methods and geometric studies regarding this special kind of paper folding. Our 
goal is to make this work and its techniques accessible to enable further development. 
By exploring significant works of the past and present of this still underexplored field, 
this paper aims to contribute to the history of this geometry and the development of 
novel design methods and a brief survey of approaches in geometry . 
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1. INTRODUCTION 

Traditional paper folding mostly uses straight creases. We call this type of origami 
prismatic origami, since straight creases surround planar facets and compose a 
polyhedral surface (e.g., PCCP shells and Miura-ori (Miura, 1970) and Resch’s 
structure (Resch et al., 1970)). Here, by altering the crease and making it into a curved 
folding, the surface suddenly becomes a complex three-dimensional form that cannot be 
described easily by simple parameters as vertex coordinates. Curved folding is a hybrid 
of folding and bending a sheet, and the surface is comprised of curved creases and 
smooth developable surface patches. This can be compared to prismatic origami being 
the result of pure folding, and the smooth developable surface created from pure 
bending of a sheet. 
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The hybrid property of curved folding has an advantage when used to form a 3D surface 
from sheet materials. When we try to form a surface by pure bending, the shape is 
limited to simple geometries such as cones, cylinders and tangent surfaces. Prismatic 
origami on the other hand is more flexible in design, but cannot represent a smoothly 
curved surface without increasing the resolution by a sufficient number of creases. Such 
creases form a large number of vertices where the material largely deforms in-plane. 
Here, a curved fold forms a variety of surfaces using mostly separated small number of 
creases. Design examples of curved folding used for forming 3D surface are shown in 
Section 3.  

Our goal is to find out further different types of applications of curved folding and to 
make curved folding applicable to a wider context of design by understanding its form 
variations and the geometry behind it. In this sense, curved folding is a relatively 
underexplored topic. Therefore, we start from introducing previous works by artists and 
designers and the applied geometric approach to analyze and design curved foldings. 
Here are the main contributions of our paper. 

We introduce the works by a variety of artists and designers who have deeply explored 
the forms of curved folding. 

We show examples of curved folding used for the design of products and interior 
fixtures and the design procedure adopted. 

We review successful geometric analysis of curved folding and the design methods 
based on geometric and computational means. 

2. CURVED CREASES IN ART AND DESIGN 

2.1 Napkin folding 
 
When we consider examples of curved creases, the trajectories of art, mathematics and 
education cross and we can observe concurrent developments in all fields. Napkin 
folding is surprisingly well documented in German since the 17th century, but not as art, 
rather as a teaching document. This decorative art with its complicated table decorations 
required manuals to teach all techniques. An early account of such a handbook with 
curved creases is the Trincir-Buch by Georg Philipp Harsdoerffer from 1652 (Sallas, 
2010).  
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2.2 The Bauhaus model 

The teaching work by Josef Albers at the first Bauhaus in 1927 and 1928 is documented 
in photographs and represents the first account of a specific curved crease model, which 
he taught in his 'Vorkurs', an introductory design class (Adler, 2004). Albers points out 
that working with materials and exploiting its properties leads to an efficiency of means 
as a material will be utilized to its maximum potential (Londenberg, 1963). The model 
is made of concentric circles with alternating mountain and valley folds seen in Figure 1 
on the right and automatically folds into the shape seen on the left (Wingler, 1978). The 
crease pattern has different symmetries than the folded configuration.  

A variation of the design was recreated by Irene Schawinsky, the wife of Alexander 
'Xanti' Schawinsky, who was a Bauhaus student and later taught at Black Mountain 
College during the time Albers was teaching there. Her model shows a variation with a 
large hole in the center (McPharlin, 1944). Thoki Yenn publicized his version of the 
model in the 1980s, which he called 'Before the Big Bang' (Yenn, 1980's) and Kunihiko 
Kasahara, who learned of the model from Yenn, made many versions of it in his 
'Extreme Origami' in 2003 (Kasahara, 2003). Erik and Martin Demaine started to 
explore this model in 1989 and made variations of it since. The model shown in Figure 
2 at on the left uses multiple discs of paper that are joined together. The design on the 
right is comprised of multipl eindividual modules (Demaine et al., 2009). The sculptures 
are part of the Museum of Modern Art (MoMA) permanent collection. In 2008 Duks 
Koschitz togther with the Demaines created variations of this model that are based on 
crease patterns that use conic sections. The resulting shapes display very different 
symmetries than the symmetries of the crease pattern in Figure 3 (Koschitz et al., 2008). 

         
Figure 1: The Bauhaus design and its crease pattern.   
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Figure 2: Design by Erik Demaine and Martin Demaine, three joined discs and several modules 

 

Figure 3: Variations of Bauhaus model by Duks Koschitz: 

    ellipses with shifted foci, 

    ellipses & circles, 

    quadratic splines with 2 parabolas & 1 circle 
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2.3 Books on paper folding with curved creases of the 1970's 

Less known for his paper foldings but certainly recognized for his bookmaking art, Kurt 
Londenberg (1914-1995) published 'Papier und Form' featuring works of paper folding 
in 1972 with several new editions later on. He presents paper folding in various contexts 
including a section called 'architectural folding', in which he published the design in 
Figure 4. The design has similarities to the 'Groin Vault Twist' by contemporary folder 
Philip Chapman-Bell. 

Many of the photographed models were made specifically for the book and he saw this 
publication as an educational contribution (Londenberg, 1963). Londenberg attributes 
great significance to Bauhaus educator and artist, Josef Albers, and reprinted his article 
on working with paper. In the same year Hiroshi Ogawa (Ogawa , 1972) published 
crease patterns in his 'Forms of Paper' and both authors should be considered as 
designers since they made their geometrically repeating sculptures themselves. Their 
works display artistic qualities beyond the didactic role they played in their book. 

 
Figure 4: Design by Kurt Londenberg 

2.4 Two important figures of the 1970s 

The most expressive work from the 1970s that is not related to the Bauhaus model and 
uses curved creases has to be attributed to computer scientist David Huffman and artist 
Ron Resch. The contemporaries knew one another and had many discussions about 
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folding paper. Huffman remained true to his roots and took an analytical approach, 
while Resch was more interested in applied techniques for sculptures and other artistic 
endeavors. Both published and had a strong connection to computational processes, but 
only Resch used computers to realize some of his sculptural work such as the design in 
in Figure 3 at the top (Resch et al., 1974). The design is based on a tiling of a 3d curve 
which can also be seen in Figure 8 at the top. Resch, being concerned with fabrication 
methods and the expressive nature of art created this sculpture with an elaborate 
boundary that visually alters the tile from Figure 8. 

Huffman’s passion beyond his academic work was rooted in paper folding. He focused 
on tessellations with straight creases early on and it is hard to estimate when exactly he 
discovered curved creases for himself. Huffman owned the book by Hiroshi Ogawa 
with its curved crease patterns and several examples in this publication are comparable 
to Huffman’s own investigations. It is however unclear when exactly he acquired the 
book. Ogawa’s sculptures are fairly regular and his goal was to cover many techniques 
(Ogawa , 1972), however Huffman’s investigations are far more rigorous. 

Huffman’s work can be described as true to the 'one piece of paper, no cuts' rule of 
folding purists as seen in Figure 3 at the bottom (Koschitz, 2014). Huffman may have 
not considered himself to be an artist, but his work is highly valued in the folding 
community both as artistic artifacts and mathematical investigations. He mentioned in a 
description of himself while teaching at UCSC. 'I don’t claim to be an artist. I’m not 
even sure how to define art. But I find it natural that the elegant mathematical theorems 
associated with paper surfaces should lead to visual elegance as well' (Wertheim, 2004). 

The shown example in Figure 5 at the bottom consists of six pairs of two different 
spirals arranged in a rotational tiling around the center of the crease pattern. Huffman 
created several dozen of these designs around 1978. 

Both Resch and Huffman made their models with thin sheets of vinyl and pre-creased 
the folds. Resch used early CNC plotters at the University of Utah in the late 1960's and 
Huffman made his models by hand with a ball burnisher of ballpoint pen. Uncalendered 
PVC has a very similar appearance to white paper. The work of both designers is almost 
exclusively symmetric, often as regular and sometimes as rotational tilings.  



 E. DEMAINE, M. DEMAINE, D. KOSCHITZ, T. TACHI 8 

 
 

 
Figure 5: 'Space curve' by Ron Resch, Rotational tiling by David Huffman and crease pattern (ca.1978) 

2.5 Contemporary art 

Among the many contemporary folders and origami experts we would like to mention a 
few who have discussed their design approaches. Matthew Shilan for example states 
that he works with what he calls ‘systems’ and that he does not know what the result 
will be. Once a system of folding is initiated, the outcome is unknown, led as it is by the 
qualities of the material. According to him the process consists of ‘exploration and 
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invention’ (Smith, 2009). Saadya Sternberg studies geometric tessellations and creates a 
catalog of spiral tessellations that elaborates on techniques of how to use curved creases. 
He also recreated a Huffman model known as 'hexagonal column with cusps' 
(Sternberg, 2009). Jun Mitani, prolific folder and computer scientist, has created many 
designs with curved creases. The 'square based bud' model by Jeannine Mosely also 
ought to be mentioned here. It may seem to be necessary to discuss Paul Jackson’s work 
in this context, specifically his 'one fold models', but when looked at closely it becomes 
evident that while the paper is curved the creases are straight lines (Thomas et al., 
2001). The resulting sculptures are obviously developable, but do not use curved creases 
as the previously mentioned examples do. 

Contemporary examples of paper foldings in Figure 6 by Robert Sweeney, Yuko 
Nishimura and T. Roy Iwaki continue to intrigue art focused audiences and display how 
regular repeated shapes have been used in art. Sweeney systematically tackles certain 
configurations and focuses on creating free standing or suspended objects often made of 
many pieces (Schmidt et al., 2009) and in some case at large scales. Nishimura on the 
other hand has a connection to her art through folding day to day commodities from 
kimonos to wrapping goods. She does not focus on any specific area of origami 
tessellations and is interested in expressing the Japanese soul through form (Smith, 
2009).  The shown example consists of a long sheet of paper that is arranged in a 
rotational configuration similar to a paper fan. T. Roy Iwaki created elaborate origami 
masks of animals and based his designs on simple basic shapes that he then used in 
complex aggregations. He was able to achieve the necessary concave and convex 
portions of a horse's head for example in Figure 6 on the right (Iwaki, 2010). 

 

Figure 6: 'Modular sculpture' by Richard Sweeney (photo by the artist) (left), a 'relief' by Yuko Nishimura 
(photo by Yosuke Otomo) (center), 'Horse head' by T.Roy Iwaki (photo by Robert Lang) (right). 
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3. DESIGN IMPLEMENTATIONS IN PRODUCT AND INTERIOR 
DESIGN 

Industrial designers, product designers and interior architects sometimes privilege 
practical approaches over artistic methods and since we know little about this geometry 
designer’s opinions and descriptions of their own work can enlighten us in terms of how 
to design with something we don’t fully understand. The choice of working with a 
specific material for a design project is often important to a designer, but we will focus 
on formal aspects of the work. 

3.1 Lamp Designs by Poul Christiansen 

The lamp designs by the LeKlint company are still produced by hand toady. The 
designs had been developed in the family and it is unclear when exactly the first 
examples of curved creases were created. Many designs consist of cylindrical 
configurations made of long narrow plastic sheets such as the example in Figure 7 
(Jacobsen, 2008). The company hired Poul Christiansen in the 1970's to create designs 
with regular tilings. It is difficult to obtain crease patterns as the work is owned by the 
LeKlint Company and the work is now proprietary. 

 

Figure 7: 'Pendant 172' by Poul Cristiansen. 

3.2 Bench Design by Tim Herok, Markus Schein 

The 'Liegengenerator project by Tim Herok and Markus Schein helps generate bench 
designs. The process starts with defining tight constraints for two edges of the bench. 



 A REVIEW OF CURVED CREASES  11 

One edge touches the ground and the other is the center line in the symmetry plane of 
the seating area (Trebbi, 2008). Schein set up a digital model that is using a genetic 
algorithm (Schein, 2002), which is looking for a solution that a user customizes by 
tweaking height and undulation parameters. The resulting plan spline represents the 
outline on the floor and is used to construct the section spline. After intersection points 
are plotted the surface can be constructed by lofting the discrete parts together. This 
design approach is different from previous ones as it places the designer further in the 
background. User defined parameters generate the final shape that was selected by an 
algorithm. 

3.3 Metal Column Covers by Haresh Lalvani 

Haresh Lalvani’s work on column covers (Lalvani, 2003) is made with a very similar 
approach that uses a genetic algorithm to exhaustively explore a simple setup. The 
expressiveness of their 'orchestrated random' designs is remarkable when one takes the 
constraints into consideration. The column covers are part of the MoMA collection and 
are made in steel. 

3.4 Car Design by Gregory Epps 

Gregory Epps designed the car in Figure 8 as proof of concept prior to founding is 
company RoboFold. The resulting shapes of his method that starts by crumpling paper 
are irregular and have great expressive potential. Epp’s playful design method rarely 
produces cylindrical results and most of his work focuses on regular tilings made in 
aluminium for large installations. 

 

Figure 8: Car design by Gregory Epps (photo by the artist). 
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3.5 Deployable Structure by Curved Folds 

Tachi designed a deployable cellular and tubular structure by assembling curved folded 
sheets (Tachi, 2013). The 1-DOF mechanism of curved surfaces is obtained through 
refinement of rigid origami structures. Unlike ordinary rigid origami, curved folds use 
the bending of the surface for deployment. Even though each sheet tends to be very 
flexible and floppy, the assembled structure becomes stiff and self-supports when 
deployed. Figure 9 shows a vault with 18 sheets sewn together along curved creases. 

 

 

Figure 9: Tomohiro Tachi, Deployable Structure by assembly of curved foldings. 

In concluding the industrial and interior design section we would like to point out a 
curious characteristic common to all mentioned examples, which is their bias towards 
symmetry. We believe this to be a result of functional requirements and material 
constraints. The difficulties designers face when working with curved creases can be 
addressed by exploiting the economy of means of symmetric designs. 
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4. MATHEMATICAL ANALYSIS AND COMPUTATIONAL 
METHODS 

In order to make curved paperfolding applicable to design, it is necessary to understand 
its geometry. Curved creases are mathematically underexplored and no general 
representation exists today. We present some of the major approaches to the problem. 

Origami, including curved folding, can be usually modeled as an intrinsically isometric 
embedding of a plane to a 3D Euclidean space. This definition is not enough, though, as 
the Nash–Kuiper theorem concludes that there always exists such an embedding in class 
C1 (uncreased "folding") which can be arbitrarily close to a given double-curved 
surface. An example of this counterintuitive theorem (Nash, 1954) (Kuiper, 1955) 
involves non C2 points densely covering the surface. In order to capture the actual 
behavior of paper folding, we define an origami surface as a C0 surface which is 
piecewise C2. The points at which the surface is not C1 are called crease points; 
assuming the surface is piecewise-C2, the crease points decompose into locally 1D 
curves. 

4.1 Differential Geometric Analysis 

The most fundamental result starts with a differential geometric approach, i.e., 
understanding the local behavior of the surface. Huffman (Huffman, 1976) describes the 
local behavior of a crease by introducing spherical trigonometry on the Gauss sphere, 
and his publication still remains a main reference today. Resch also investigated curved 
creases and stipulated that every space curve can be used to construct three distinct 
curved creases. He demonstrated his approach using early computer graphics rendering 
in Figure 10 (Resch et al., 1974) (Resch, 1974). 
 

 
Figure 10: 'Space Curve' byRon Resch and Ephraim Cohen, screen shots of curve and surfaces, rendering. 
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Fuchs and Tabachnikov (Fuchs et al., 1999) further Huffman’s work and contributed 
significantly to the understanding of developable surfaces and curved creases.. They 
assess that it is possible to fold an arbitrary curve drawn on paper into a 3D crease with 
higher curvature. If the curve is strictly convex and closes onto itself (e.g., circle) then 
the folded 3D crease is not in a plane. They also elaborate on the behavior of rulings 
along folded crease 

Even though these local analyses form the base of other geometric design approaches, 
these general results themselves stop at the first crease, while multiple creases are 
applied in practical designs. Demaine et.al. (Demaine et al., 2014) investigate curved 
creases and surface between multiple curved creases, and give qualitative properties that 
a curved folding must satisfy. This characterization first succeeded in analyzing paper 
with non-trivial multiple creases (not planar), e.g., Lens tessellation designed by David 
Huffman in Figure 11. On the other hand, Demaine et. al. (Demaine et al., 2009b) 
describe how paper behaves between straight creases and mathematically answer why 
only curved creases can produce interesting curved surface. In other words, the surface 
surrounded by straight creases cannot bend and must stay polyhedral. 

 
Figure 11: David Huffman, Lens Tesselations, reconstruction by Duks Koschitz.   

 
4.2 Constructive Geometric Approach 

One of the simplest design methods of curved folding with more than one crease is to 
use reflection. We start from a single developable surface and cut and reflect it by 
planes. The reflection is a special case of curved folding where the crease lies on a 
single osculating plane as described in Huffman's Primer on Paper (Huffman, 1976). 
This is a simple yet effective method and has been deployed by many artists. For 
example, Huffman’s cone model is created using a single cone and its mirror 
reflections. The reconstruction process shows how Huffman designed these types of 
models (Demaine et al., 2010). Further reflections in Huffman's own archive that are 
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based on cylinders and cones can be reconstructed and analyzed in simple digital ways 
(Koschitz, 2014). Jun Mitani's software Ori-Ref allows users to these manipulations in 
the computer.  

4.3 Inverse Calculation of a Crease 

More advanced methods solve an inverse problem to connect known elements such as 
cones and cylinders with a curved crease. Geretschläger (Geretschläger, 2009) sets out 
to understanding curved creases by predefining the geometry of a piece of paper in a 
curved state. He then assumes the path of a crease and calculates the position of the part 
of the paper on the other side of the fold.  

This type of inverse approach is useful to construct reusable modules for constructing 
symmetrically aligned or tessellated figures. Mosely analyzes curved creases of her own 
'cube shape', a volumetric model she invented that uses several tiles of a simple crease 
pattern made of four semicircles (Mosely, 2002). Also, in her tessellation works, a curve 
is numerically calculated so that cones and cylinders symmetrically tessellate a plane 
(Mosely J. (2008). 

4.4 Discrete Geometric Approach 

In order to deal with fully generalized curved folding without predetermined 
assumptions on the form of surfaces, we need to globally solve geometric problems by 
discretizing and globally solving the geometric problems.  

Lalvani uses genetic algorithms that select mutated straight polyhedra. His 
“Morphological Genome Project” is based on defining parameter sets or genes, which 
are then used to modify a polyhedral shape. The final selected results by the genetic 
algorithm are developable (Lalvani, 2003). The practical application of this work lead to 
metal column covers for interiors as described in Section 3.3. 

The symmetric basic shape of the Spidron pattern can be considered as a discrete 
version of curved folding that follows a logarithmic curve (Erdély, 1979). The 
discretization is based on triangular strips to describe the developable surface. As 
triangulated strips can use its non-smooth nature to represent warped surfaces and this 
approximation can be problematic we should instead consider a planar quad strips as 
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Kilian and his colleagues or apply torsion-free constraints as Kergosien as his 
colleagues for obtaining ruling configurations. 

Kergosien et al. take an engineering approach to investigate early simulations of paper 
(Kergosien et al., 1994). Starting from a generic curve they are able to fit a developable 
surface. If the boundary curve creates crossing rule lines their algorithm finds a curved 
crease within the boundary as seen in.  

Kilian et al. model curved folding using planar quadrangle meshes (PQ-meshes) and 
deploy an optimization based method (Kilian et al., 2008). A case study they 
investigated is a car design by Gregory Epps that is made of a single piece of paper. The 
physical model is 3D scanned and an elaborate process of analysis, rule line searching, 
plane fitting and edge optimization follows that results in a description of the piecewise 
developable surface. The work can post-rationalize a scanned paper model, which is 
useful for fabrication for instance, but does not describe the folding process or generate 
novel forms, which still presents the main challenge today. 

5. CONCLUSION 

We have reviewed a small portion of previous works of curved folding in art and 
design, examples of industrial applications of curved folding, and mathematical and 
computational considerations reflected in some of the designs. We hope that this study 
helps the development of novel curved folding design in a structural context. 
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