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1 Introduction

You have probably seen a long balloon twisted into a dog like Figure 1(a). But did you know that
the same balloon can be twisted into a regular octahedron like Figure 1(b)?

(a) Classic dog (one balloon). (b) Octahedron (one balloon).

Figure 1: Two one-balloon constructions and their associated graphs.

Balloon twisting offers a great platform for making, exploring, and learning about both polyhe-
dra and graphs. Even the classic balloon dog can be thought of as a graph, with edges corresponding
to balloon segments between the twists. Children of all ages can thus enjoy the physicality of the
balloon medium while learning about mathematics.

Here we give a practical guide to making polyhedra and related geometric constructions with
balloons, while briefly describing the mathematics and computer science related to balloon con-
struction. The latter is the focus of a companion paper [DDH08], which contains further details.

2 If Euler Were a Clown

What polyhedra can be made by twisting a single balloon, like the octahedron in Figure 1(b)? The
balloon must traverse every edge of the polyhedron in sequence, and can traverse each edge only
once, though it can (and will) visit each vertex multiple times. Mathematicians will recognize this
structure as an Eulerian path, as studied by Euler in 1736 [Eul36]. We review this classic mathe-
matics of this structure in the context of balloons by wondering: what is the simplest polyhedron
that can be made from a single balloon?

The simplest (nonflat) polyhedron is a tetrahedron, but a tetrahedron cannot be made from
a single balloon. Such a balloon would start at some vertex and end at some other vertex, but
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for every remaining vertex, each time the balloon enters the vertex it also exits the vertex. Thus,
for a balloon twisting of a graph to possibly exist, every vertex except possibly two (the starting
and ending vertices) must have an even number of edges incident to it, or even degree. But in the
tetrahedron, all four vertices have odd degree. Thus the tetrahedron cannot be made from one
balloon.

The four-dimensional analog of a tetrahedron (called the 4-simplex ) consists of four tetrahedra
glued together face-to-face. One 3D projection of a 4-simplex is a regular tetrahedron with all four
vertices joined to a fifth vertex added in the center. Every vertex is thus joined to all four other
vertices, giving it even degree. So the 4-simplex does not have the “too many odd-degree vertices”
obstruction that the tetrahedron had. Indeed, Figure 2 shows a 4-simplex made from one balloon.
Building one is somewhat difficult for practical reasons; we suggest you try it, and if you get stuck,
see [Mor07].

Figure 2: The 4-simplex, made from one balloon, is a puzzle to twist.

In fact, a single balloon can be twisted into any connected graph in which all vertices have even
degree. The starting point is to traverse the graph näıvely: start the balloon at any vertex, route
it along any incident edge, and keep going, at each step following any edge not already visited.
Because the vertex degrees are all even, whenever the balloon enters a vertex, there is always
another unvisited edge along which it can exit. The only exception is the starting vertex, where
the balloon’s initial exit left an odd number of unvisited edges. This vertex is the only place where
the balloon might have to stop, and eventually this must happen because the balloon will run out
of edges to visit. When this happens, the balloon forms a loop that visits some edges once, but
possibly does not visit some edges at all. Now consider just the graph of unvisited edges. It too has
even degree at every vertex, because the balloon exited every vertex it entered, including the start
vertex. Hence we can follow the algorithm again with a second balloon, and a third balloon, and so
on, until the balloons cover all the polyhedron’s edges (and no two balloons cover the same edge).
Now we take any two balloons that visit the same vertex and merge them into one balloon by the
simple switch shown in Figure 3. This also forms a loop, and visits all the same edges. Repeating
this process, we end up with one balloon forming a loop that visits every edge exactly once.

Now we have a construction for twisting many graphs from a single balloon. We have seen one
4D polyhedron to which this construction applies, but what about 3D polyhedra? One example is
the octahedron from Figure 1(b). The octahedron has six vertices, each of even degree 4. Therefore
the general construction applies; Figure 4 shows a practical construction; see also [Sha07, EKR00,
Mor07]. The octahedron is actually the only Platonic solid twistable from a single balloon: for all
the others, every vertex has odd degree (3 or 5).

Are there simpler 3D polyhedra than the octahedron that are twistable from one balloon? If we
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Figure 3: Joining two balloon loops (top left) into one balloon loop (bottom right) when the two
loops visit a common vertex (shaded, and abstracted on the right).

Figure 4: The octahedron is like the balloon dog of balloon polyhedra. With practice, it can be
twisted quickly from one balloon.

glue two tetrahedra together, we get a triangular dipyramid. The two apices have odd degree 3, but
the remaining vertices all have even degree 4. We know that a single balloon cannot tolerate more
than two odd-degree vertices, but this polyhedron has just two, putting it right at the borderline
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of feasibility. Figure 5 shows that it indeed can be made from one balloon,

Figure 5: The triangular dipyramid is perhaps the simplest polyhedron twistable from one balloon,
and is easier than the octahedron.

More generally, a single balloon can be twisted into any connected graph with exactly two
vertices of odd degree. Just imagine adding an extra edge to the graph, connecting the two odd-
degree vertices. This addition changes the degrees of the two odd-degree vertices by 1, making
them even, and does not change the degree of any other vertices. Hence this modified graph has all
vertices of even degree, so it can be twisted from a single balloon forming a loop. We can shift the
loop of the balloon so that it starts and ends at one of the odd-degree vertices. Then we remove the
added edge, from both the graph and the balloon. We are left with a single balloon visiting every
edge of the original graph exactly once. Naturally, the balloon starts at one odd-degree vertex and
ends at the other.

Summarizing what we know, a one-balloon graph has at most two odd-degree vertices, and every
connected graph with zero or two odd-degree vertices can indeed be twisted from one balloon. What
about graphs with one odd-degree vertex? Don’t worry about them; they don’t exist. Euler [Eul36]
showed that every graph has an even number of odd-degree vertices. To see why, imagine summing
up the degrees of all the vertices. We can think of this sum as counting the edges of the graph,
except that each edge gets counted twice, once from the vertex on either end. Therefore the sum
is exactly twice the number of edges, which is an even number. The number of odd terms in the
sum (the number of odd-degree vertices) must thus be even.

We conclude that we know all one-balloon graphs. In fact, we have just rediscovered the
classic characterization of Eulerian paths, common in graph-theory textbooks, but in the context
of balloons. (For example, Bondy and Murty’s book [BM76] uses the same trick for the case of two
odd-degree vertices.)

If you are looking for a good challenge for making a polyhedron from one balloon, we recommend
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the cuboctahedron. Every vertex has degree 4, but there are twenty-four edges and sharper dihedral
angles, making it difficult to twist except from especially narrow balloons. If you get stuck, see
[Mor07], which also has other interesting examples such as the pentagonal antiprism.

3 Cheating with One Balloon

One trick for transforming graphs into one-balloon graphs is to double every edge: whenever two
vertices are connected by an edge, add a second edge alongside it. This change doubles the degree
of every vertex, so all resulting vertices have even degree. Therefore we can make the doubled
graph from one balloon. In other words, one balloon visits every edge in the original graph exactly
twice instead of once. The results can look attractive; see, e.g., [Sab08, Mor07].

In fact, we do not need to double every edge: we just need to double edges along paths connecting
the odd-degree vertices in pairs, except for one pair of odd-degree vertices which we can leave alone.
Minimizing the number of edges we double is the Chinese postman problem, a well-studied problem
in computer science. Balloons offer a fun context for studying efficient algorithms for this problem.

After we have made a balloon with some of the edges doubled, we could pop the extra edges
using a sharp object. The result is a more uniform aesthetic. For example, Figure 6 shows how
a tetrahedron, which would normally require two balloons, can be made from one balloon with
one popped segment. (We leave the construction of the tetrahedron with a doubled segment as
an exercise for you. Remember to start and end at the two odd-degree vertices.) In practice, be
careful to twist the ends of a segment extensively before popping it, to prevent affecting the incident
segments.

Figure 6: Pop-twisting a tetrahedron from one balloon.

On the topic of balloon popping, a challenging type of puzzle is this: given an already-twisted
balloon polyhedron, can you pop some of the balloon segments to make another desired graph? This
problem is known as subgraph isomorphism, and is among the family of computationally intractable
“NP-complete” problems [GJ79], so there is likely no good algorithm to solve it.

4 Polyballoon Constructions

If we cannot make a graph with just one balloon, how many do we need? The minimum number
of balloons that can make a particular graph, with each edge covered by exactly one segment, is
the graph’s bloon number [DDH08].

There turns out to be a very simple formula for the bloon number: it is half the number of odd
vertices [DDH08, Theorem 2].1

1Unless, of course, the graph has no odd vertices; then the bloon number is 1, not 0.
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On the one hand, we cannot hope for fewer balloons: each odd-degree vertex must be the start
or end of some balloon, so each balloon can “satisfy” only two odd-degree vertices. On the other
hand, there is a construction with just this many balloons, using a simple construction similar to
the arguments above. First we add edges to the graph, connecting odd-degree vertices in disjoint
pairs. The number of added edges is half the number of odd-degree vertices. The resulting graph
has all vertices of even degree, because we added one edge incident to each vertex formerly of odd
degree. Therefore it can be made from one balloon forming a loop. Now we remove all the edges
we added. The number of removed edges, and hence the number of resulting balloons, is half the
number of odd-degree vertices.

It now becomes an easy exercise to figure out how many balloons we need for our favorite
polyhedron. For example, a tetrahedron requires only two balloons, as shown in Figure 7; see
also [EKR00]. An icosahedron requires six balloons, which can be made into identical two-triangle
units as shown in Figure 8. The same unit can make a snub cube from twelve balloons, as shown
in Figure 9, as well as a snub dodecahedron from thirty balloons (an exercise: see also [Sab08]).
Note that, in both cases, there are two fundamentally different ways in how the balloons can be
assembled, right-handed and left-handed. This is a nice lesson on chirality (handedness).

Figure 7: The tetrahedron is easy to twist from two balloons.

For all Platonic and Archimedean solids, there is a construction out of balloons that (1) uses
the fewest possible balloons, (2) uses balloons all of the same length, and (3) preserves all or most
of the symmetry of the polyhedron [DDH08]. Achieving all of these properties together can be a
fun puzzle. In fact, achieving just the first two properties is a computationally difficult problem:
decomposing a graph into a desired number of equal-length balloons is a special case of “Holyer’s
problem” in graph theory, and it turns out to be among the family of difficult “NP-complete”
problems, even for making polyhedra [DDH08, Theorem 6].

5 Tangles

Balloons can make many more graphs than just polyhedra. A simple extension is to look at
disconnected graphs, made from multiple shapes. Alan Holden’s book Orderly Tangles [Hol83]
introduced regular polylinks, symmetric arrangements of identical regular polygons, which make
a good subject for balloon twisting. Tangles have recently been explored with the aid of (freely
available) computer software to find the right thicknesses of the pieces [Har09], which may be
especially useful for determining the best-size balloons for twisting.

Perhaps the simplest example of a tangle is a model of the Borromean rings assembled from
three rectangles, each lying in a coordinate plane. This model is fairly easy to construct from three
balloons as shown in Figure 10; see [Wor07] for a variation. Figure 11 shows a more challenging
construction made from six squares; the difficulty is not twisting the squares, of course, but inter-
linking them in the correct over-under pattern. Harder still are the six-pentagon tangle and the
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Figure 8: The icosahedron is a good example of joining several (six) identical balloon units. The
tied balloon ends make it easy to attach vertices together.

four-triangle tangle; see [Har09].
A further generalization of regular polylinks are polypolyhedra [Lan02], which allow the symmet-

rically arranged shapes to be Platonic solids in addition to regular polygons. Some examples such
as the famous “five intersecting tetrahedra” have been around for many years, and recently even
the subject of balloon twisting [Wor07, DDH08]. But a thorough enumeration of all polypolyhedra
is relatively recent [Lan02]. For a longer project, ideally with a group of mathematical balloon
twisters, we recommend looking through this catalog of polypolyhedra.

6 Practical Guide for Twisting Balloon Polyhedra

Twisting balloons into polyhedra and related structures has been explored by several others in
recent years [EKR00, Wor07, Sha07, Mor07, Sab08]. In particular, you may be interested in video
instructions [Mor07] and in chemical 3D tilings [EKR00]. In the rest of this section, we give some
practical tips for twisting your own balloons into polyhedra.

Long skinny balloons come in two main sizes: 160s (1-inch diameter, 60-inch length) and 260s
(2 inches by 60 inches). For making one-balloon polyhedra, or complicated tangles, 160s are better.
For most multiple-balloon polyhedra, the extra thickness of the 260s is better for stability. Of
course, by not inflating all the way, or by attaching multiple balloons together, the balloon can
reach any width-to-length ratio you like.

One of the biggest challenges is to get the balloon segments to be of equal length. Twisting
a single balloon into the correct number of equal-length segments is something that just takes
practice. If your lengths are off, you can always untwist and start again. When working with
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Figure 9: The snub cube is a bigger example of joining several (twelve) identical balloon units,
recommended for groups of polyhedral balloon twisters. We leave the final form as a surprise.

Figure 10: The Borromean rings are easy to make from three balloons.

multiple balloons, it can be helpful to inflate them all to the same length before twisting them.
You may want to shorten the lengths of all the edges on a finished balloon structure, for example

to get a tangle to fit together snugly. One way to do this is to grab all the edges at a vertex, and
twist them all together. Performing such a twist at every vertex results in an aesthetically pleasing
effect that accents the vertices.

Another problem you may run into is wanting to pass the end of a balloon through a hole that
is narrower than the inflated balloon. If you can fit the deflated end of the balloon through, you can
then squeeze the air through the deflated portion and inflate the other side. It is better, though,
to figure out a twisting order that avoids this, and this is a puzzle in itself.

Enjoy your mathematical twists!
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Figure 11: The six-square tangle is a good puzzle in assembling balloon tangles.
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